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Abstract: The advent of Artificial Intelligence in the cockpit and the air traffic control
centre in the coming decade could mark a step-change improvement in aviation safety,
or else could usher in a flush of ‘AI-induced’ accidents. Given that contemporary AI
has well-known weaknesses, from data biases and edge or corner effects, to outright
‘hallucinations’, in the mid-term AI will almost certainly be partnered with human expertise,
its outputs monitored and tempered by human judgement. This is already enshrined in
the EU Act on AI, with adherence to principles of human agency and oversight required
in safety-critical domains such as aviation. However, such sound policies and principles
are unlikely to be enough. Human interactions with current automation in the cockpit
or air traffic control tower require extensive requirements, methods, and validations to
ensure a robust (accident-free) partnership. Since AI will inevitably push the boundaries
of traditional human-automation interaction, there is a need to revisit Human Factors to
meet the challenges of future human-AI interaction design. This paper briefly reviews
the types of AI and ‘Intelligent Agents’ along with their associated levels of AI autonomy
being considered for future aviation applications. It then reviews the evolution of Human
Factors to identify the critical areas where Human Factors can aid future human-AI teaming
performance and safety, to generate a detailed requirements set organised for Human AI
Teaming design. The resultant requirements set comprises eight Human Factors areas, from
Human-Centred Design to Organisational Readiness, and 165 detailed requirements, and
has been applied to three AI-based Intelligent Agent prototypes (two cockpit, one air traffic
control tower). These early applications suggest that the new requirements set is scalable
to different design maturity levels and different levels of AI autonomy, and acceptable as
an approach to Human-AI Teaming design teams.

Keywords: aviation; human-AI teaming; intelligent agents; human factors requirements

1. Artificial Intelligence in Aviation
Artificial Intelligence is beginning to appear in civil aviation, principally via Machine

Learning and Deep Learning approaches [1] in a wide variety of applications, including,
for example, flight operations and unmanned aerial vehicles [2], weather prediction [3],
and numerous improvements in air traffic management [4]. Such augmentations to sys-
tem performance largely enhance efficiency and safety of operations. There is, however,
a broad scope for the increased uptake of AI in cockpit and air traffic control settings, in
the guise of future ‘Intelligent Agents’ that could assist pilots and air traffic controllers
interactively and dynamically in real-time flight operations. This would rely on Machine
Learning approaches rather than Generative AI models such as ChatGPT [5] and other
Large Language Models, as the latter are currently ruled out by the EU Act on AI [6] for
safety-critical systems due to the problem of hallucinations [7,8]. But Intelligent Agents
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would afford more human-machine interaction, lending more autonomy to the IA to take
on tasks, as well as giving advice during challenging and time-critical flight upsets.

Assistance by AI at such a level is known as Human AI Teaming (HAT: also Human
Autonomy Teaming and Human Machine Teaming) [9]. Early examples of HAT prototypes
include cockpit support for startle response [10], determining safe alternate airports due to
severe weather degradation [3], delivering air traffic control sector workload prognoses [11],
cockpit management of unstable approaches [12], single-pilot operations [13], and ATC
support for landing/arrival sequencing [14].

It is useful to put HAT into context by considering actual examples of use cases. This
paper is based on research under the auspices of the Horizon Europe HAIKU project
(https://haikuproject.eu/ accessed on 20 March 2025), which is exploring six futuristic
HAT use cases—two cockpit, two air traffic, and two airport—with varying levels of AI
autonomy. Three of the use cases are more team-oriented in nature (the other three are more
similar to machine learning support for an airport, use of a chatbot by passengers, and an
early concept study of AI controlling drone traffic with very little human interaction), as
outlined below and illustrated thematically in Figure 1 (all six use cases are shown):

1. UC1—a cockpit AI to help a single pilot recover from a sudden event that induces
‘startle response’. Startle response is when a pilot in the cockpit is startled by a sudden,
unexpected event in or outside the cockpit, leading to a temporary disruption of
cognitive functioning, usually lasting approximately 20 s. [10]. The AI directs the
pilot concerning instruments to focus on in order to resolve the emergency situation.
Although the AI supports and directs the pilot, the pilot remains in charge throughout.

2. UC2—a cockpit AI to help flight crew re-route an aircraft to a new airport destination
due to deteriorating weather or airport closure, for example, taking into account a
large number of factors (e.g., category of aircraft and runway length; fuel available
and distance to airport; connections for passengers, etc.). The flight crew remain in
charge, but communicate/negotiate with the AI to derive the optimal solution.

3. UC4—a digital assistant for remote tower operations, to alleviate the tower controller’s
workload by carrying out repetitive tasks. The tower controller monitors the situation
and intervenes if there is a deviation from normal (e.g., a go-around situation, or
an aircraft that fails to vacate the runway). The controller is in charge, but the AI can
take certain actions unless the controller vetoes them.
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These use cases are in relatively early design stages, but AI prototypes have been de-
veloped allowing human-in-the-loop simulations to explore human-AI teaming in realistic
aviation scenarios with licensed pilots and controllers as participants. These use cases
therefore serve as useful ‘testbeds’ for Human Factors and HAT approaches.

The fundamental question arising for such future HAT concepts, and the principal
focus of this paper, is how to ensure that such HAT systems will be safe and operationally
effective if implemented, given that most existing Human Factors assurance approaches
have not been designed or developed to deal with AI and HAT.

Currently, new cockpit or ATM system designs are subject to Human Factors design
requirements e.g., EASA’s CS25.1302 for cockpit Human Factors design (https://www.easa.
europa.eu/sites/default/files/dfu/CS-25_Amdt%203_19.09.07_Consolidated%20version.
pdf (accessed on 20 March 2025)), and SESAR Human Performance Assurance Pro-
cess (https://www.sesarju.eu/sites/default/files/documents/transversal/SESAR%202020
%20-%20Human%20Performance%20Assessment%20Guidance.pdf (accessed on 20 March
2025)) guidance for air traffic towers and en route control centres. Such requirements sys-
tems have evolved over many decades of civil aviation, encompassing pilot and air traffic
controller (ATCO) experience and insight, incident and accident experience, and Human
Factors research. However, AI is developing at a rapid pace and could have profound
implications for aviation systems and human-machine interaction. It will be hard for a
traditional approach of gaining experience to keep up with AI developments. The last time
there was a radical change in human-machine arrangements—namely the introduction
of glass cockpits into the industry—it initially led to a spate of ‘automation-assisted acci-
dents’, Appendix 1 in [15]. The key question is therefore how to prepare for AI advances
and ensure that near-future Human-AI Teaming concepts of operation are both effective
and safe.

Aviation regulators such as the European Union Aviation Safety Agency (EASA), as
well as regulators in other safety-critical domains such as Oil and Gas [16], are well aware
of this predicament, and EASA in particular have issued advance guidance for aviation
‘Human-AI Teaming’ scenarios [17,18], depending on the level of autonomy of the AI under
consideration for implementation into flight operations. Such guidance is both timely and
welcome and sets safeguards or ‘guardrails’ for designers and developers of future aviation
HAT system concepts.

In parallel with the issuance of EASA’s guidance, the HAIKU project has been devel-
oping and testing its own set of guidance material for future aviation HAT developers.
HAIKU’s mission, that of aiding designers in developing human-centric HAT systems,
leads to a broader scope than that of a regulator, for example, also focusing on organi-
sational practices, and staff competence and well-being factors that can affect not only
technology acceptance, but indirectly system performance and the ability to detect AI
errors [19]. This broader scope leads to a wider range of Human Factors requirements than
a regulatory set. This paper therefore documents the process for the development of the
HAIKU HAT requirements and shows both their application and added value via insights
gained from three HAIKU HAT use cases.

2. Research Questions and Approach
The development of a preliminary set of new Human Factors HAT requirements for

aviation applications has been guided by four over-arching questions, shown as four steps
in Figure 2:

1. What type of AI and Human-AI Teaming characteristics are likely in future aviation
concepts?
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2. What does the existing body of Human Factors knowledge suggest we should focus
on for HAT systems?

3. What are the Human-AI Teaming requirements arising from the gap between what
we have currently in HF requirements systems, and the challenges of future HAT
concepts of operation?

4. Are the new HAT requirements fit for purpose, i.e., can they be used by project
teams to identify new system design insights to safeguard and optimise human-AI
team performance?
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The first step seeks to sharpen the focus on the type of AI being considered, namely,
Machine Learning (ML) systems developed to produce Intelligent Assistants/Agents to
support the air traffic controller in an air traffic control centre or tower, or pilots in the
cockpit, whether for current dual-pilot operations or potential future single-pilot operations.
The ML focus is because currently GenAI/Large Language Models or LLMs are not allowed
for safety-critical systems according to EU law, and Artificial General Intelligence does not
yet exist [20,21]. The AI focus of interest is further actualised by considering the type of
interaction with operational end users, in particular, the level of autonomy of the AI (the
relative degree of control by human and AI elements). Given that the focus of this paper is
aviation, the EASA guidance on levels of automation is used as the principal framework to
consider levels of AI assistance and style of interaction and work-sharing between AI and
human elements. These levels are exemplified by three HAIKU use cases, concretising the
concepts of operation of future AI-based systems.

The second step involves a review of the existing knowledge base of Human Factors
from its outset 7 decades ago until recent early studies of Human AI Teaming (HAT). After
an early focus on physical ergonomics, much of the remaining focus of Human Factors has
been on people interacting with automation. AI is likely to change this picture, however,
as it can have a level of autonomy not seen in current aviation systems. The historical
review, although inevitably somewhat subjective according to the author’s HF experience
over the past 4 decades, allows consideration of how some of the formative theories of
Human Factors might have addressed (and could still address) the potential HAT scenarios
afforded by AI-based systems.

Step 3 concerns contextualisation, essentially rendering the theoretical Human Factors
considerations into practical requirements that can be tested in use case applications. Exist-
ing industrial HF requirements are not theoretical, since they are used as design support as
well as in certification systems. New HAT requirements must therefore also be contextual
so they can be applied to actual (existing or design-stage) aviation AI-based systems and
system elements, verifiable via system performance evidence. HF Requirements therefore
embody Human Factors theory but are contextualised according to workplace equipment
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and modes of interaction with operational end users (in this case, pilots and air traffic con-
trollers). Step 3 essentially considers the pertinent aspects from the HF review in the context
of future HAT concepts of operation. The result is a set of new HAT (HF) requirements
couched in language designers can work with.

The fourth, final step sees the application of the new requirements to the HAT use
cases, to see if they result in novel insights and design improvements that are convincing to
the respective project teams. If this is so, then the new set of HAT requirements can serve as
a preliminary approach for other future HAT systems evaluations, the requirements set to
be updated as user experience and HF research evolve with respect to HAT development
and implementation.

3. Step 1: Scoping the HAT Requirements
3.1. What Kind of AI?

Artificial Intelligence (AI) has a relatively long history, as illustrated in the lower half
of Figure 3, dating back to the 1950s [22,23] and arguably even back to the 19th Century via
Charles Babbage’s counting machines [24]. AI initially had the goal of replicating certain
human cognitive abilities, albeit with more reliability. Hence, the fundamental notion was
one of computation, of ‘crunching the numbers’, which humans could do given enough
time, but rarely error-free. As computing power grew, it soon surpassed what humans could
do even given infinite time, and with the advent of deep learning [1], it could sometimes
derive novel solutions to problems that we would never have thought of [21]. Thus, the
goal of AI shifted from replicating human cognitive capabilities to surpassing them.
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The AI timeline in the lower part of Figure 1 shows that many inventions or initiatives
believed generally to be relatively recent, have in fact been around for a long time, including
robots, natural language processing, neural networks, computer vision, and even self-
driving cars. However, many of these were prototypes, and did not go ‘mainstream’ until
recently (robot assembly for car manufacturing being a notable exception) [25].
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As Figure 1 also shows, AI has already experienced two ‘AI winters’, where its
promise vastly exceeded its delivery, leading to an investment and technological cliff edge,
so that AI largely disappeared for a while from the public eye [26,27]. But as computing
power increased by orders of magnitude, and as Machine Learning approaches began
to show their worth and earn their keep, AI once again caught the public’s attention,
and has attracted both brilliant minds and eye-watering levels of investment. The public
release of ChatGPT [5] and other Generative AI (hereafter called GenAI) systems in 2022
transformed AI from being a technophile, jargon-imbued subject to being a workplace
and even household commodity. Even if most people have little idea of how AI works,
they know that it can do things for them, whether helping their research, finishing or
finessing a report, or providing a diagnosis of their health symptoms. Though many have
experienced firsthand the errors and biases of GenAI systems, they accept the trade-off
between its accessibility and instant power to answer questions and requests, against the
occasional inaccuracies or plausible fabrications called hallucinations [8].

A definition of Artificial Intelligence pertinent to this paper is as follows [28]:

“. . .the broad suite of technologies that can match or surpass human capabilities, particu-
larly those involving cognition.”

Most AI systems today represent what is known as Narrow AI [29], namely AI-based
systems and services focused on a specific domain such as aviation, typically using Machine
Learning (ML). In ‘normal’ programming, e.g., for automation, a machine is programmed
exactly what to do and, given stable inputs, that is exactly what it will do. The code may
be complex, but is completely explainable, at least to a software analyst or data scientist.
Narrow AI supports humans in their analysis, decision-making, and other tasks. In cases
where tasks are well-specified and predictable, it can execute its functions without human
intervention and with minimal supervision.

Machine Learning can develop models and predictions that perhaps, given enough
time, humans could do. Deep Learning is different and can come up with solutions humans
likely would never think of. That said, Deep Learning typically uses artificial neural
networks, themselves inspired by the way human brains work. Deep Learning is used
for some of the more complex human cognitive processes we take for granted, such as
natural language processing [30] and image recognition [31], and also for tackling complex
problems such as finding cures for intractable diseases [32] (see [9,21,25,33–35] for a general
summary of contemporary AI and HAT application areas).

The hallmark of Generative AI (GenAI) tools, such as ChatGPT, Google Gemini, DALL-
E, and DeepSeek-R1 are that they can create new content that is often indistinguishable
from human-generated content. They utilise deep learning neural networks trained on
vast data sets and natural language processing to render interaction with human users
smoother. Large Language Models (LLMs) like ChatGPT can respond to a human user to
any query. Whether the response is a valid or correct one is another matter [36].

The point about ML, Deep Learning, and GenAI is that these systems are still ‘crunch-
ing the numbers’, and in the case of LLMs they are generally predicting the next word in
a sequence. Nowhere is there understanding, or a mind, or thought. They may be very
useful, but they are all essentially ‘idiot savants’ [28]. The problem is that particularly with
advanced LLMs, it can feel to the user as if they are interacting with a person (known
as anthropomorphising or personifying AI) [37,38]. This can matter in a safety-critical
environment and is returned to at the end of Step 2.

Artificial General Intelligence (AGI) does not yet exist but is predicted to emerge in
the coming decades, e.g., by 2041 [20]. It would effectively comprise a mind capable of
independent reasoning and could therefore in theory attain sentience. AGI would be able
to set its own objective functions (goals), and its intelligence could grow very rapidly to



Future Transp. 2025, 5, 42 7 of 38

eclipse that of human beings [21]. While the step from GenAI to AGI may seem small, given
the way LLMs such as ChatGPT can summarise vast swathes of knowledge, in practice
the step is significant. For the rest of this paper, therefore, AGI is ignored, as it may never
be realised.

What could exist in a relatively short time frame are ‘Intelligent Assistants’ (IAs)
or ‘Digital Colleagues’, as envisaged by the concept of Human-AI Teaming, also called
Human Autonomy Teaming, both using the same acronym HAT or else Human Machine
Teaming [9,11,13,17–19,34,35]. The essential nature of HAT and in particular Intelligent
Assistants (IAs), which differentiates it from conventional and contemporary automation,
is the idea of an IA having a degree of autonomy/agency such that it can have intent,
form goals and decisions, and execute such decisions, in collaboration with one or more
human agents. Such IAs therefore could, in the coming decade, collaborate with and even
converse with pilots and air traffic controllers in operational settings. These IAs are still
Narrow AI (ML, including Deep Learning) with or without Natural Language Processing
capability. They would not be GenAI, at least not now in the current legal framework in
Europe given the EU Act on AI, and would certainly not constitute AGI. Early examples of
HAT prototypes have already been cited earlier in the introduction [10–14] and are further
expanded in Section 3.3.

First, it is necessary to further define the characteristics of intelligent agents, as meta-
reviews have noted the construct confusion currently existing in the domain of Human-AI
Teaming [34,35]. This is settled pragmatically by consideration of the six EASA HAT
categories, as they define the level of AI (or IA) autonomy at each level.

3.2. AI Levels of Autonomy—the European Aviation Regulatory Perspective

Given that Intelligent Assistants (IAs) are intended to interact and collaborate with
humans in aviation contexts, there is clearly an increase in their autonomy compared to
automation simply presenting information and warnings. This shift in degree of autonomy
affects the relationship between the human and the AI-based automation in two ways.
First, the information or advice, or even executive action, can be based on calculations that
are opaque to the end users (e.g., pilots), because the level of complexity and transparency
of how AIs derive their answers means that no amount of theoretical training for pilots will
enable them to follow the IA’s ‘reasoning’, unless an additional layer of ‘explainability’ is
afforded to the pilot by the AI-based automation. The pilot must therefore come to trust the
IA, or its advice will be rejected. Second, the role of the pilot is affected, because currently
the pilot is always ready (i.e., trained) to take over in case the automation (e.g., automatic
landing) fails. The fundamental notion of collaboration suggests an interdependence;
control becomes to a greater or lesser degree shared between human and AI.

It is therefore useful to map the degree of IA autonomy, and autonomy sharing
between human and IA. Increasing levels of autonomy can be represented on a scale, and
the most influential scale in aviation currently is that provided by the European Union
Aviation Safety Agency (EASA). Recent guidance on Human-AI Teaming (HAT) from the
EASA [17,18] envisages six categories of future Human-AI partnerships:

1A—Machine learning support (already existing today)
1B—cognitive assistant (equivalent to advanced automation support)
2A—cooperative agent, able to complete tasks as demanded by the operator
2B—collaborative agent–an autonomous agent that works with human colleagues, but
which can take initiative and execute tasks, as well as being capable of negotiating with its
human counterparts
3A—AI executive agent–the AI is basically running the show, but there is human oversight,
and the human can intervene (sometimes called management by exception)
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3B—the AI is running everything, and the human cannot intervene.

It has been argued that AI innovation, for all its benefits, is essentially ‘just more
automation’ supporting the human operator [37]. The critical threshold in AI autonomy
where this may no longer hold appears to be between category 2A and 2B [39,40], since this
is different from what we have today in civil aviation cockpits. The distinction between 2A
and 2B is clarified by EASA as follows, including what each one is and is not [40]:

• Cooperation Level 2A: cooperation is a process in which the AI-based system works
to help the end user accomplish his or her own goal. The AI-based system works
according to a predefined task-allocation pattern with informative feedback to the
end user on the decisions and/or actions implementation. The cooperation process
follows a directive approach. Cooperation does not imply a shared situation awareness
between the end user and the AI-based system. Communication is not a paramount
capability for cooperation.

• Collaboration Level 2B: collaboration is a process in which the end user and the AI-
based system work together and jointly to achieve a predefined shared goal and solve
a problem through a co-constructive approach. Collaboration implies the capability
to share situation awareness and to readjust strategies and task allocation in real
time. Communication is paramount to share valuable information needed to achieve
the goal.

There are currently no [AI-based] civil aviation systems that autonomously share tasks
with front-line users (e.g., pilots) and can negotiate, make trade-offs, change priorities, and
initiate and execute tasks under their own initiative. Even for ‘lesser’ autonomy levels such
as 1B to 2A, and also for 3A, there remains the opacity issue, wherein the AI is often akin to
a ‘black box’, and as such may surprise, confound, or confuse the end users, because most
end users will not be able to follow the computations underpinning AI advice. This leads
to the raison d’etre of this paper, namely that AI and IAs represent something novel, and
as such, conventional automation interface design and Human Factors approaches may
not be sufficient to assure the safe use and acceptability of such systems. At the very least,
issues such as roles and responsibilities, trust in automation, and situation awareness will
have additional significant nuances that may require augmentation of existing approaches.
Furthermore, new issues such as operational explainability of AI systems may require
completely new approaches or design requirements [34,35].

3.3. Example Intelligent Agent Use Cases

Three aviation HAT Intelligent Agent use cases are presented below, from the HAIKU
project. The first use case (UC1) addresses support to a single pilot in the event of star-
tle response, wherein a sudden unexpected serious event (e.g., a lightning strike) can
cause ‘startle’, leading to diminished cognitive performance for a short period of time
(e.g., 20 s) [10]. The FOCUS (Flight Operational Companion for Unexpected Situations)
IA supports the pilot firstly by detecting startle via various psycho-physiological sensors
(breathing, heart rate, skin conductance etc.) analysed by a trained AI, using an AI tech-
nique known as Extreme Gradient Boosting (see [1]). Second, it analyses where the pilot is
looking compared to where the pilot should be looking given the situation, and if different,
FOCUS highlights the relevant parameter on the cockpit displays (see Figure 4). This is
effectively directed situation awareness. It is based on Standard Operating Procedures
(SOPs) for emergency events (e.g., lightning strike), coupled with sensors related to dy-
namic flight parameters (which together define for the IA what is happening and what
needs to be done), compared to where the pilot is looking (via eye tracking), and what the
pilot is doing (all in real time). The IA may therefore highlight certain displays or display
segments in the cockpit (e.g., the Primary Flight Display, or PFD) to the single pilot, e.g., the
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Vertical Speed display. Once the pilot has looked at the display or display element, FOCUS
then considers what is next. If the pilot looks at the correct next display, there is no further
need for highlighting.
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FOCUS is there to help the pilot regain situation awareness and stabilise the aircraft.
Once the pilot feels back in control, they can cancel the automation, and carry on flying
without the IA.

Two real-time simulations have been carried out with airline pilots using FOCUS
in a startle scenario (lightning strike). The high-level results show that the FOCUS sys-
tem aided pilots suffering a startle response in quickly regaining situation awareness
and control.

A second HAIKU use case (UC2) concerns advising a two-pilot crew in case of a major
diversion, e.g., due to a developing weather pattern (e.g., major thunderstorm), rendering
the original destination airport and the pilot’s back-up alternate airport inaccessible. Such
re-routing while en route can take the flight crew 12–15 min to find a suitable airport
according to a number of factors including remaining fuel, runway characteristics for
the aircraft and its passenger manifest, whether the airline has a maintenance or ground
handling contract with the airport, and how easy it will be for the passengers to reach
their final destination from the newly chosen airport. An AI-based assistant has been
developed called COMBI (using a data-based supervised learning AI ML approach), which
can identify up to three airports within reach. The IA’s calculation time takes less than
a minute instead of 12–15 min. The flight crew can then select one of the airports and
can also query COMBI’s selection according to a number of parameters; the IA therefore
has a degree of operational explainability. There is also a degree of negotiation between
pilots and IA; hence, in EASA terms, the system is category 2A/2B. The cockpit simulator
platform for this use case is shown in Figure 5.
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Figure 5. Simulator platform for COMBI IA (Figure shows the simulator platform for the COMBI AI
experiments (Thales Avionics, Bordeaux, France)).

A third HAIKU use case is for an air traffic control tower. In this use case, an Intelligent
Sequence Assistant (ISA), based on a neural network, is being developed to support and
enhance decision-making for Air Traffic Controllers. ISA optimises runway utilisation
in single-runway airports, providing real-time sequencing suggestions for arriving and
departing aircraft. ISA computes the ordered sequence of aircraft that will use the runway,
the order displayed on the tower controller’s Human Machine Interface (HMI) via numbers
placed on the electronic strips of each aircraft, e.g., Figure 6 in the controller’s ‘bay manage-
ment area’. If an event (e.g., in the figure the BAW is flying faster than expected) triggers
a resequencing, ISA updates the sequence in real time, and the results are displayed on
the HMI to the controller. ISA also provides explainability on-demand. For example, in
Figure 6, ISA signals that the take-off ‘window’ for the KLM is now too small due to the
BAW’s increased speed, and so the BAW will land prior to the KLM take-off and takes
position ‘2’ in the strip (as indicated by the upward arrow in the bottom left hand corner
of Figure 6).
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The real-time assistance provided by ISA ensures timely and accurate forecast updates,
allowing Tower Air Traffic Controllers (ATCOs) to manage the traffic flow more efficiently,
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with more ‘look-ahead time’ than currently, as ISA can see further ‘upstream’. The ben-
efits are improved decision-making, enhanced runway utilisation, increased operational
efficiency, and a safer and more streamlined air traffic flow that reduces the need for ‘go-
arounds’. In EASA terms, this use case is HAT category 2A, as the AI gives advice, and if
the ATCO does nothing, after a certain short period of time ISA will implement the change.

These three use cases form the testbed for the application and evaluation of the HAT
Human Factors Requirements developed in the next two sections.

4. Review of Human Factors
In order to determine what is needed from Human Factors for future HAT systems,

it is useful to briefly review Human Factors as a whole, over its 70-year history, to see
how it has developed into its current capability set, in order to better understand what
needs to be added to accommodate new AI-based systems and, in particular, Intelligent
Assistants. As noted earlier, such a review is inevitably somewhat subjective in terms of
the choices of key historical themes or ‘waypoints’ in the evolution of Human Factors. The
choices are based on 4 decades of experience in three industrial sectors (aviation, nuclear
power, and petrochemical), including contributions to the development of Human Factors
requirements in each of those industries, as well as applying them to actual nuclear plants,
air traffic control systems, and oil rig human interface designs.

4.1. Key Waypoints in Human Factors

Human Factors and Ergonomics have always focused largely on human work and the
workplace. As highlighted in the upper half of Figure 3, Human Factors started out with
a focus on physical ergonomics and on the layout of cockpit instruments and controls, for
example. By the 1980s and 1990s the focus had shifted to cognitive ergonomics, in parallel
with the fact that many work situations involved computing and automation. As work
complexity grew, constructs such as situation awareness and mental workload came to
the fore, and as automation became the norm, there was a corresponding need to consider
complacency and bias, as well as a move from a focus on human error to system resilience.
Arguably, these developments over time have prepared Human Factors for the next major
step change in human-machine interaction associated with AI, HAT, and IAs.

This section therefore details key milestones and themes in Human Factors over
the past 7 decades that have helped application domains such as aviation achieve and
sustain very high levels of safety. These are the principal focal areas and capabilities of
Human Factors that need to be revisited (or even resurrected), reviewed, and updated
in the context of AI, in order to form the basis of a Human Factors Requirements set for
AI-based systems. Each milestone is outlined below, with one or more key references, along
with the implications for Human Factors assurance of future Human-AI Teaming systems
in aviation.

4.1.1. Fitts’ List

One of the first landmark achievements was the development of a contrasting list
of what machines are good at, versus what humans are good at. This was developed by
Paul Fitts and is perennially known as Fitts’ List [41,42]. Notably at the time, most of the
cognitive ‘heavy lifting’, including pattern recognition and interpretation of ‘noisy’ data,
was left to the human. A more recent analysis [43] showed that the distinction between
people and machine’s relative capabilities has shifted, or at least blurred, and is likely to
blur further given ongoing advances in AI (both ML and GenAI). It would seem timely to
review the relative strengths of human and AI (including LLMs), as otherwise allocation
of tasks will revert to the ‘left-over principle’ (see Ironies of Automation below), in which
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humans are allocated tasks and functions the AI can’t easily do, whether or not the human
can do them or take over from the AI when it fails.

4.1.2. Aviation Safety Reporting System

Human Factors was given an early boost when NASA created a Human Factors
group to contribute to the Apollo space missions. At around that time, the Aviation Safety
Reporting System (ASRS) was set up by the FAA and NASA (https://asrs.arc.nasa.gov/
(accessed on 20 March 2025)). ASRS collected data on safety-related events (e.g., mistakes
made by pilots), guaranteeing pilots immunity (with a few exceptions) from prosecution if
they reported. ASRS provided a constant wellspring of viable information about what was
not working in the cockpit or on the ground. This enabled a continuous feedback loop that
has run in parallel with the inexorable increase of the role of technology in the cockpit.

If (when) AI begins to be used operationally in the cockpit or ATC Ops Room or Control
Tower, ASRS and equivalent systems (e.g., ECCAIRS in Europe [https://aviationreporting.
eu/en] (accessed on 20 March 2025)) would also likely need additional categories to
capture AI-related characteristics of events, and errors that arise during Human-AI Teaming
operations (see HFACS, later).

4.1.3. Crew Resource Management

Crew Resource Management [44] (originally called Cockpit Resource Management),
was to become one of the major contributions of Human Factors to aviation safety. CRM
gave flight crews the means to become more resilient against human errors and teamwork
problems, and complemented ongoing work to make the cockpit design itself less error-
prone. The need for CRM grew from the world’s worst civil aviation air disaster at Tenerife
airport in 1977 but was also linked to the United Airlines Flight 173 air crash in 1978 [45].
Both accidents highlighted team and communication errors, and the need for specific
training on leadership, decision-making, and communication on the flight deck, and with
air traffic control (which in Europe later developed its own version of CRM called Team
Resource Management or TRM [46]). CRM focuses on proper use of the available human
resources in operational teams and has spread to other domains such as maritime via Bridge
Resources Management (BRM) or Maritime Resources management (MRM) [47]. CRM
remains strong today, is currently in its sixth generation, and continues to be a mainstay in
aviation Human Factors and aviation safety. If AI-based systems begin to play a role in
either cockpit or ATC workplaces, or significantly support flight crew/ATCOs, potential
impacts on CRM/TRM need to be understood and safeguards put in place. This will be
particularly the case with Intelligent Assistants at EASA category 2A or 2B, where the flight
crew and the IA are sharing tasks and even negotiating over how best to achieve goals.

4.1.4. Human-Centred Design and Human Computer Interaction

The 1980s is generally considered to be the epoch wherein Human Factors and Er-
gonomics became more ‘cognitive’ in their approach. Norman’s landmark work on de-
sign [48] reflected the ubiquitous rise of computer usage in aviation and other industrial
domains and ushered in a lasting focus on human-computer interaction (HCI) and the
benefits of human-centred design (HCD) [49]. It also contributed to the development of
the broader and still flourishing field of Usability [50]. Human-AI interaction, whether via
keyboard, speech, or other media, will be critical for the safe and effective introduction of
AI-based systems into operational aviation contexts. A superordinate Human-Centred De-
sign approach to the development and validation of Human-AI Teaming solutions would
facilitate the principles of both human agency and human oversight [51]. Many HCI and
Usability requirements will probably still apply to AI-based interfaces and interaction, with
the proviso that new requirements may well be needed for a human-AI speech interface via
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natural language processing (NLP) as well as operational explainability (OpXAI) to help the
end user understand the AI’s decision-making processes [52]. Operational explainability is
poised to become a major new area for Human Factors research.

4.1.5. Joint Cognitive Systems

Joint Cognitive Systems (JCS) [53] and Cognitive Systems Engineering (CSE) [54]
introduced the concept of a cognitive system as an adaptive system that functions using
knowledge about itself and the environment in the planning and modification of actions.
CSE sought to side-step the man-vs machine paradigm and consider the cognitive output
of both working together. Key to this is the idea of a mental model of the automation
(or AI) and how it works and delivers its output. With its focus on the joint cognitive
picture emerging from the agents in the system (human/machine), it paved the way for
Situation Awareness (see later). Its focus on examining work in situ, rather than in the lab,
and its focus on more naturalistic examination of decision-making scenarios (aka natural-
istic decision-making [55]), also paved the way for Safety II and Resilience movements
in Human Factors (see later). Given that JCS/CSE are fundamentally about cooperation,
unsurprisingly they also drew together a range of disciplines, forming a hybrid commu-
nity comprising Computing/Data Science, Systems Engineering and Systems Thinking,
Human Factors, Neuro-Science, and Social Sciences (including Psychology). Such a hy-
brid community approach would probably benefit current Human-AI Teaming design
and development.

4.1.6. Ironies of Automation

At around the same time, Bainbridge [56] published her seminal ‘Ironies of Automa-
tion’ article, which highlighted some of the key dilemmas of human-automation pairing
that still exist today and are relevant to human-AI teaming. As an example, as automa-
tion increases, human work can require exhausting monitoring tasks, so that rather than
needing less training, operators need to be trained more to be ready for the rare but crucial
interventions. Bainbridge and her colleagues also stated the case that automation is often
given precedence, while humans are left to do the things that automation cannot do, in-
cluding stepping in when the automation can no longer deal with the current conditions,
or simply fails. The importance of the Ironies is that they act as checks and balances for
system designers, with warnings about certain design philosophies and pathways that tend
not to work, leading instead to endemic system performance problems and drawbacks.
Endsley [57] has already begun the process of updating the Ironies for HAT systems.

4.1.7. Levels of Automation and Adaptive Automation

Sheridan was one of the key proponents of ‘levels of automation’, which can be seen
as an alternative or complement to Fitts’ List. His 10 levels of automation [58,59] run from
fully manual to fully automated:

1. The computer offers no assistance, human must take all decisions and actions
2. The computer offers a complete set of decision/action alternatives, or
3. Narrows the selection down to a few, or
4. Suggests one alternative, and
5. Executes that suggestion if the human approves, or
6. Allows the human a restricted veto time before automatic execution
7. Executes automatically, then necessarily informs the human, and
8. Informs the human only if asked, or
9. Informs the human only if it, the computer, decides to
10. The computer decides everything, acts autonomously, ignores the human



Future Transp. 2025, 5, 42 14 of 38

Sheridan’s work also contributed to the notion of adaptive automation [60], wherein,
for example, the automation could step in when (or ideally, before) the human became
overloaded in a work situation. The earlier-mentioned case study on startle response [10]
is effectively AI-supported adaptive automation, detecting startle and then directing the
pilot’s attention to key display components to stabilise the aircraft. Adaptive automation
suggests the need for a number of requirements, including how to safeguard the role and
expertise of the human, and how to switch from human to AI and back again as required.
Adaptive automation also raises ethical issues in terms of data protection, e.g., where AI
components such as neural networks use real-time human performance data (EEG, heart
rate, galvanic skin response, etc.) as inputs to determine when to take over. Pilots may
have concerns over the measurement and recording of such data, as it could reflect on their
medical fitness for duty, a pilot licensing requirement.

4.1.8. Situation Awareness, Mental Workload, and Sense-Making

Prior to Situation Awareness as a Human Factors construct, there were (and still
remain) related concepts such as vigilance and attention [61], born from the early study
of WWII radar display operators (and later, air traffic controllers) and the ability to detect
signals such as incoming missiles or aircraft, given that the signal-to-noise ratio was
low, and given both time-on-task and fatigue. Whereas attention and vigilance can be
considered to be states related to alertness or arousal, situation awareness tends to be more
contextualised, e.g., awareness of elements in the environment, such as aircraft in a sector
of airspace.

Situation Awareness (SA) therefore focused less on the state of cognitive arousal,
and more on the detail of what the human is aware of and what it means for the current
and future operation. Indeed, the principal SA method, the Situation Awareness Global
Assessment Technique (SAGAT, [62]) focused on three time frames: past, current, and
future. As complexity rose in human-plus-automation environments such as cockpits and
air traffic control centres, the question became how well the human understood what was
going on, what was going to happen in the near future, and how to (re)act. The next
question became how much the pilot or air traffic controller could assimilate from their
controls and displays, in both short time frames and longer durations. This led to the study
of mental workload (MWL), considering the task demands vs. human capabilities and
capacities, including problems of overload and underload [61,63].

SA and Mental Workload signalled a deepening of the focus on cognitive activities,
relating them in a measurable fashion to the actual cognitive work and operational context,
delivering viable metrics that could be measured in simulations or in situ. Both SA and
MWL have become mainstays in the design, validation, and operation of human-operated
aviation systems. They are useful constructs because they help designers determine what
the flight crew need to know (and see/hear), and when, and in what sequence and priority
order, and when users may become overloaded. However, the perception of what is
happening (and going to happen) to an object may be insufficient when the AI is processing
its inputs; the human may need to understand what is behind the AI output.

More recently, this delving into mental processes has focused on sense-making, which
is the way people make sense out of their experience in the world [64]. Sense-making
deals with the human need to comprehend, often via the exploration of information. In
relation to AI, sense-making helps to test the plausibility of an AI’s explanations as well as
anomalous outputs or event characteristics. Sense-making is a useful construct particularly
in conditions where uncertainty is high and not all signals may be present, or where some
signals may be erroneous. Unfortunately, for such situations, as can happen in flight upsets
(also known as loss of control in flight), there is no straightforward associated metric
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to determine how easily flight crew will be able to make sense of a particular scenario.
Instead, realistic simulations are carried out with pilots undergoing abnormal events, and
SA measurements and post-simulation debriefs, as well as safety and aircraft performance
measures, are arguably the best way to determine the safety of the cockpit design or air
traffic control system.

There is a very real danger that AI systems, which tend to be ‘black boxes’, can
undermine the human crew’s situation awareness, both in terms of what is going on, and
of what the AI is doing or attempting to do. A critical question therefore becomes how to
develop an interface and interaction means so that the AI and the human can remain ‘on
the same page’.

Additionally, there will need to be operational explainability (OpXAI), so that the
human crews can determine (i.e., make sense of) why a course of action has been recom-
mended (or taken) by the AI. Such explainability needs to be in an operational context in
language that crews can follow (as opposed to data analytic explainability, which refers
more to how to trace an AI’s outputs to its internal architecture, data sources, and algorith-
mic processes).

Workload will become more nuanced with human-AI teaming partnerships, as there
may be more periods of underload followed by intense workload periods, especially if the
AI is suddenly unable to function.

Realistic and real-time simulations with human crews as occur now, both for flight crew
and air traffic controllers, must continue. These will become human-plus-AI simulations.
The human crews need to see how AI works in realistic contexts, so they can gain trust in
it. They also need to see it when it fails or becomes unavailable, so that they can recover
from such scenarios. Low SA, plus a sudden spike in mental workload due to loss of the AI
support, and an inability of the AI to explain its recommendations, could well be a recipe
for disaster.

4.1.9. Rasmussen and Reason–Complex Systems, Swiss Cheese, and Accident Aetiology

Rasmussen’s work on complex systems and safety, underpinned by his Skill, Rule
and Knowledge-Based Behaviour hierarchy [65], had a big impact in the 1980s and 1990s
in many high-risk industry domains. It may be worth revisiting this model as there are
undoubtedly skill sets that may be lost (this already happens with automation), and rules
(e.g., Standard Operating Procedures [SOPs] in cockpits) may become more fluid as AI-
based support systems find ever-new ways of optimising operations in real time. Perhaps
most interesting will be the area of knowledge-based behaviour (KBB), namely, having to
consider what is going on in a situation based on a fundamental understanding of how the
system works and responds to external/internal perturbations. KBB incorporates not only
factual knowledge (also called declarative knowledge) but also experience amassed over
years of operating a system (e.g., an aircraft) in a wide range of conditions.

KBB can be supported by Ecological Interface Design (EID) [66], resulting in high-level
displays to monitor critical functions or safety parameters, as were developed in the nuclear
power domain to avoid misdiagnoses of nuclear emergencies. This is an attempt to take
a complex system’s inputs and outputs and make sense of them. However, the problem
with AI is that its complexity may be unfathomable for humans, at least in reasonable and
normal operational timescales. This suggests a need for display approaches that make the
complex system’s workings and output relatable, backed up by explainability function that
can at least approximate what the AI has done and why.

Since AI operational explainability can probably never be completely trustworthy (it
is an approximation, and few will be capable of understanding what goes on ‘under the
hood’ of an AI), an interface that affords the pilot or other aviation worker an effective
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system safety overview, unfiltered by AI, would seem a sensible precaution. Moreover,
since diagnosis of an aircraft emergency may become a shared human-AI process, the
question is one of how to ensure that no human ‘tunnel vision’ or misdiagnosis by an AI
leads to catastrophe. A deeper question becomes how to visualise AI performance so that it
is evident to the human when the AI is operating outside its knowledge base or has limited
statistical confidence in its prognosis.

Reason’s so-called Swiss Cheese model of accident aetiology [67], although dated, is
still in regular use today. It proposes that accidents occur via vulnerabilities in a succession
of barriers (e.g., organisation, preconditions, [un]safe acts, and defences). The vulnerabil-
ities are like the holes in Swiss cheese, and the larger or more proliferated they are, the
easier it is for them to ‘line up’ and for an accident to occur. What is interesting is that AI
could in theory affect all these layers, either increasing or decreasing the size and quantity
of the holes. It could also reduce the independence between each barrier, so that in reality,
a system has fewer barriers before an accident occurs.

It would be useful to consider how AI could affect the Swiss Cheese layers differentially,
e.g., use of LLMs at the organisational and preconditions layers, and AI-based tools at the
unsafe acts and defences layers. Such a layered model also leads to the question of how
different AIs will interface with one another. We already talk of Human-AI Teaming, but
there will also be Human-AI-AI-Human and Human-AI-Human-AI variants before long,
potentially allowing for problems to propagate unchecked across traditional ‘defence-in-
depth’ boundaries.

4.1.10. Human-Centred Automation

In the 1990s, after a series of ‘automation-assisted aviation accidents’ following the
introduction of glass cockpits, Billings [15] developed the concept of Human-Centred
Automation. This tradition has generally persisted in aviation ever since. The nine core
principles of HCA are as follows:

i. The human must be in command
ii. To command effectively, the human must be involved
iii. To be involved, the human must be informed
iv. The human must be able to monitor the automated system
v. Automated systems must be predictable
vi. Automated systems must be able to monitor the human
vii. Each element of the system must have knowledge of the others’ intent
viii. Functions should be automated only if there is good reason to do so
ix. Automation should be designed to be simple to train, learn, and operate

These are the ‘headline’ principles, but there are many others in this watershed research
carried out by Billings and others, e.g., ‘automation should not be allowed to fail silently’.
Such principles (i.e., all of them, not only the top nine) could be revisited for AI, as already
several of them are in danger of not being upheld, e.g., some AI-based systems may not
be predictable; reciprocal knowledge of the others’ intent may prove difficult to achieve
in practice.

4.1.11. HFACS (and NASA–HFACS and SHIELD)

The Human Factors Analysis and Classification System (HFACS) approach [68] was
developed for the US Navy, and has proven popular, often leading to ‘variants’ in other
domains including space (NASA–HFACS [69]) and maritime (the SHIELD taxonomy, [70].
HFACS and equivalent taxonomies of human error and its causes/contributory factors
have been in use for decades to determine how and why an error occurred, and how
to prevent its recurrence. HFACS-like systems do not address only the surface factors
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(what happened), but deeper causes, including Human Factors elements, supervisory
practices, and organisational and cultural factors. In this respect, HFACS embodies a Swiss
Cheese approach.

As AI-based systems are introduced to support flight crews and air traffic controllers
in their daily operations, taxonomies such as HFACS will likely need updating, adding
new terms linked to human-AI interactions. Although some blanket terms already exist,
such as complacency and over-trust with respect to automation, these are probably not
nuanced enough to capture the full extent of the transactional relationships that will exist
between human crews and AI support systems, especially as those systems become more
advanced and even executive (i.e., not requiring human oversight).

Additionally, as the AI is seen more as an ‘agent’, consideration must be given to the
ways in which it, too, can fail. Already, as noted above, some general failure modes have
been considered, such as data biasing, hallucinations, edge and corner cases, etc., but there
are likely many more, some of which may be subtle and hard or even impossible to detect.
The scenario in which ‘data forensics’ is required to understand why an AI suggested
something that contributed to an accident, is probably not far in the future.

4.1.12. Safety Culture

Safety culture, namely, the priority given to safety by the organisation, from the CEO
down to the front-line and support workers, originated in the nuclear power industry
following the Chernobyl disaster [71]. It has been applied to aviation most notably since the
Uberlingen midair collision in 2002 and mentioned frequently in other aviation accidents.
Today, more than 30 European air traffic management organisations have undergone safety
culture surveys [72]. Commercial aviation (air traffic control and commercial flight crews)
is generally seen as having a positive safety culture.

As noted in a companion paper to this one [73], the introduction of AI into operational
aviation systems could aid or degrade safety culture in aviation. In particular, the concern is
that human personnel may delegate some of their safety responsibility to the AI, especially
if the AI is taking more of an executive role. There is therefore a critical need for a new
safety culture approach to monitor what is happening to safety culture as AI is introduced
into the cockpit and ATC Ops room or Tower.

4.1.13. Teamwork and the Big Five

According to the ‘Big Five’ theory of Teamwork [74], the core components of teamwork
include team leadership, mutual performance monitoring, back-up behaviour, adaptability,
and team orientation, which collectively lead to team effectiveness. These components
are predicated on shared mental models, mutual trust, and closed-loop communication.
Similar to Crew Resource Management, Teamwork could be significantly disrupted by
the introduction of IAs. However, AI could also act as a diverse and potentially more
comprehensive ‘mental model’ backup system for the pilots, one that is instantly available
and adaptable when a sudden unexpected situation occurs. This contrasts with today,
where it can take humans a short time to re-adapt, time that can be crucial in an emergency
scenario in-flight (one of the principal reasons there are always two pilots in the cockpits of
commercial airliners). Probably key for Human-AI Teamwork will be trust and closed-loop
communication. The latter will likely entail short, succinct, and contextual explainability
provided by the AI, whether in procedural or natural language, and/or visually via displays.
Team orientation will be an issue for AI-based systems that aim to carry out and execute
certain tasks. The very existence of such agents suggests the need for specialised training
for leadership of a human-AI team.
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4.1.14. Bias and Complacency

Parasuraman [75] considered the potential end states of automation as implemented
in aviation systems. He defined four (non-exclusive) categories: use, misuse (over-reliance),
disuse (disengagement), and abuse (poor allocation decisions between human and ma-
chine). He found the primary factors influencing these end states to be trust, mental work-
load, risk, automation reliability and consistency, and knowing the state of the automation.
One of the more worrying biases was the withdrawal of attention from cross-checking
the automation and considering contradictory evidence, summarised as ‘looking but not
seeing’. The effects such as complacency (not checking) and automation bias (over-trust)
are not easy to fix, e.g., via training, and are apparently prevalent in both experienced or
naïve (i.e., new) users [76].

As with several other major study areas of Human Factors, the area of automation
bias (especially complacency) needs to be revisited, for several reasons. The first is that
cross-checking AI is likely to be more complex, as the way the AI works will itself be more
complex and sometimes not open to scrutiny (either non-explainable or unfathomable for
humans). The availability and salience of contradictory evidence is highly pertinent to the
human capacity of acting as a back-up to the AI, given the well-known biases of humans,
including representativeness, availability, anchoring and confirmation biases [77,78] (AIs,
especially LLMs, are also not immune to biases). The human may want to know why a
particular course of action was suggested and others were ignored. Ways to show such
‘alternates’ therefore need to be considered, possibly including the trade-offs the AI has
made, or data it has ignored as outliers or irrelevant. Similarly, knowing the state of the AI
will also be important; not simply whether it is ‘on’ or ‘off’, but its confidence level given
the situation at hand compared to the data it was trained on. There is also the question of
prior experience: existing pilots can compare their experience to what the AI is suggesting,
whereas new pilots (in the future) who have never known a system without AI support,
may not have such ‘unfiltered’ prior experience.

4.1.15. SHELL, STAMP/STPA, HAZOP, and FRAM

There are a number of means of analysing the risks associated with human-machine
systems. A general thematic framework systems approach model is provided by
SHELL [79], which considers the software (procedures and rules), hardware, environ-
ment, and ‘liveware’ (humans and teams), and how they can interact to either yield safe or
unsafe outcomes. Approaches such as the Systems Theoretic Accident Model and Processes
(STAMP) framework and its derivative Systems Theoretic Process Analysis (STPA), both
developed by Leveson [80], deliver a systematic and formalised analytic approach for
identifying human-related hazards and potential mitigations. The Hazard and Operability
Study (HAZOP) approach developed in the chemical industry in the 1970s by Kletz [81],
though arguably less structured, is still an insightful and comparatively agile approach to
identifying human-related hazards in complex systems, including those with AI [14,82].
The Functional Resonance Analysis Method [83] has as core premises that most of the
time, most things go right, and that there is often a large gap between ‘work as imag-
ined/designed’ and ‘work as done’ in the real operational system (this perspective on risk
known colloquially as Safety II [84]).

As a safety-critical industry, aviation must carry out hazard assessment to identify
potential hazards and develop appropriate mitigations. At the moment, all of the methods
above (and others) can be used to identify hazards that can occur in human-AI systems.
The problem is that we are missing two inputs. The first is a model of how the AI can
fail, or exhibit aberrant behaviour, or suggest inaccurate/biased resolutions or advice. We
already know some of the answers, in terms of hallucinations, edge cases, corner cases,
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biased data usage, etc. [85]. But these are generic. What we need is a way to determine
when these and other AI ‘failure modes’ are likely, given the type of ML/LLM being used,
its data, and the operational context it is being applied to. It is likely that a taxonomy of AI
failure mechanisms will develop as more experience is gained with AI-based systems, but
it would be preferable not to have to learn the hard way.

The second unknown, or ‘barely known’, relates to ‘human+AI’ failure modes, i.e., the
likely failure types when people are using and interacting with various types of AI tools.
We already have ‘complacency’, but this is a catch-all term, and knowing when it is likely or
not, as a function of the human-AI system design, is unpredictable. This is problematic: how
can a safety-critical system be certified if complacency is a likely user characteristic and
the AI can fail? There is a need for greater understanding of the evolution of human-AI
inter-relationships. This may entail longer-term study of human-AI working partnerships,
perhaps in extended simulations (lasting months rather than days or weeks), effectively
constituting a safe ‘sandbox’ in which to see emergent behaviour of both human and AI,
moving beyond ‘work as imagined’ and ‘work as done’, to ‘work as AI-assisted’.

4.1.16. Just Culture and AI

Since the implementation of ASRS, aviation has generally been seen as having an
effective reporting culture, enabling it to be an informed culture, learning from events to
continually improve. The reporting culture is predicated on a Just Culture [86], in which the
aviation system prefers to learn from mistakes than blame people for them, as long as there
is no reckless behaviour or intention to cause damage or harm. In European aviation, this
principle is enshrined in law (Regulation (EU) No 376/2014 of the European Parliament
and of the Council of 3 April 2014). But there is a potential double-bind in the future for
human agents in aviation [87]. If they are advised by an AI to do something and it results
in an accident, they may be asked by a court of law to justify why they did not recognise
the advice was faulty. Conversely, if they choose not to follow AI advice and there is
an accident, they will be asked why they did not follow the AI’s advice. Responsibility and
justice are human constructs, and an AI, even if its future role is that of an executive agent
in an operational aviation system, cannot be prosecuted in a court of law, and prosecuting
its developers will likely be fraught with legal complexities. For example, what judge or
jury will have sufficient AI literacy to understand what really happened in such an accident,
and how will they overcome hindsight and other biases (e.g., ‘the pilot should have known
better’) in forming their deliberations?

Just Culture could be a major deal-breaker for unions and professional associations
who feel their members (pilots, controllers, others) are at risk of being prosecuted in an area
with little legal precedent, and given juridical framework variations according to country,
and potentially serious criminal charges. Hypothetical test cases should be carried out in
legal sandboxes to anticipate legal argumentation and potential outcomes in this area, and
more generally to expand the Just Culture ‘playbook’ [88]

4.1.17. HF Requirements Systems–EASA CS25.1302, SESAR HP, SAFEMODE, FAA

Over the decades there have been various Human Factors requirements and as-
surance approaches. Of particular note in Europe is EASA Certification Standard (CS)
25.1302 (https://www.easa.europa.eu/sites/default/files/dfu/CS-25_Amdt%203_19.09.07
_Consolidated%20version.pdf (accessed on 20 March 2025)), which is concerned with con-
trols and displays in cockpits, and contains detailed guidance on all aspects of information
usage including display design, situation awareness, workload, alarms, etc. Essentially, all
controls and displays need to be fit for human purpose whether in normal, degraded mode,
or emergency situations. Whilst there is no European-wide regulatory equivalent for Air
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Traffic Management (ATM) systems in Europe, there is comparable guidance available via the
SESAR (Single European Sky ATM Research) programme and its Human Performance Assess-
ment Process (HPAP) (https://www.sesarju.eu/sites/default/files/documents/transversal/
SESAR%202020%20-%20Human%20Performance%20Assessment%20Guidance.pdf (accessed
on 20 March 2025)). This approach breaks down four high level areas—roles and re-
sponsibilities, the human-machine interface, teams and communications, and transition
to operations—into detailed and measurable requirements in an argument-based struc-
ture. The SESAR HPAP allows a Human Factors ‘case’ to be built for a new system
design or change, showing where the design complies with Human Factors principles,
and where it does not (or does not need to). More recently, an EU research project called
SAFEMODE (https://www.safemodeproject.eu/ (accessed on 20 March 2025)) has de-
veloped a Human Factors assurance platform called HF Compass, which refers to the
HPAP but also highlights more than 20 tools and techniques that can be used to pro-
vide evidence that Human Factors has been assured for a new system. Very recently,
EASA (https://www.easa.europa.eu/en/document-library/general-publications/easa-
artificial-intelligence-concept-paper-issue-2 (accessed on 20 March 2025)) has provided
preliminary guidance on the Human Factors assurances required for AI-based systems
in aviation, in the form of regulatory requirements. The Federal Aviation Agency (FAA)
has also recently released its own Roadmap (https://www.faa.gov/aircraft/air_cert/step/
roadmap_for_AI_safety_assurance (accessed on 20 March 2025)) for safety assurance of AI-
based systems in aviation, though it is currently focused more on safety than Human Factors.

The existing guidance from CS25 1302, the SESAR HPAP, and the EASA guidance
on Human Factors aspects of human-AI Teaming systems, all offer excellent foundations
for an approach focused on Human-AI systems. Section 5 accordingly presents a Human
Factors Assurance system for Human-AI Teaming systems.

4.2. Contemporary Human Factors and AI Perspectives

Having reviewed the historical landmarks in Human Factors and their implications for
Human-AI systems, this subsection briefly reviews a sample of the more recent emerging
Human Factors literature on Human-AI Teaming, focusing on a model of HAT and the
issues of personification (anthropomorphism) of AI and emotion-mimicking AI.

4.2.1. HACO—A Human-AI Teaming Taxonomy

In a recent paper on Human AI Collaboration (HACO), a Human-AI Teaming (HAT)
taxonomy has been usefully mapped out [89] and its key insights relevant to this paper are
outlined below.

The HACO concept has six core tenets: context awareness, goal awareness, effective
communication, pro-activeness, predictability, and observability. Taken as a whole, one way
to summarise these tenets is that they all ensure that the team members, including the AI,
are ‘on the same page’ with what is happening and what to do about it. In practice, this
should mean that the workflow remains smooth, without surprises, significant breaks or
disruptions, or conflicts. As with human teams, it does not require perfect understanding
of one another, but an appreciation of individual behavioural norms (including style of
interaction), pace of work, skill sets and capabilities, and limitations.

Context awareness is possibly a more useful (and less anthropomorphic) label than
situation awareness when applied to intelligent agents. It seeks to establish what the AI
was responding to within its inputs and data sets. However, this is not always simply the
superficial data in the environment (e.g., weather patterns that might affect flight route),
but the way the AI will use statistical and other algorithms to interpret such data according
to the task and goals at hand. The design challenge is to maintain the usability adage of
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‘what you see is what you get’, whether this is achieved via natural language dialogue or
(more likely) visual media that can decrypt the AI’s computational processes in meaningful
and quickly ‘graspable’ ways for the end user.

Goal awareness (a precursor to goal alignment) is a higher-level attribute, related
to context awareness, and ensures that human and AI goals are aligned. This becomes
important in work arrangement scenarios where the AI is able to modify the goal hierarchy,
and where goals may dynamically shift during a scenario (e.g., for an emergency, as
conditions worsen or become more stable). It can also be important where there are
a mixture of safety and other goals, some of which may conflict with safety. Similarly, as
for contextual awareness, a design challenge is how to ensure the human is aware of the
goals the AI is working towards as they change and evolve.

Effective Communication can occur via various modalities, from natural language
and even gestures, to digital displays and procedural textual responses to human prompts.
Communication for AI tools or systems below EASA’s category 2B may not need to be that
advanced, though for 1B and 2A there may require explainability if the AI’s task or output
is sufficiently complex. For human AI collaboration at the 2B level, there will likely not
only need to be communication, but a degree of rapport, so that the AI is communicating
in terms and contexts familiar to the human. This implies a shared understanding of the
local operational environment conditions and practices. For example, this can refer not
only to a specific aircraft type such as an A320 or B737, but how those aircraft types are
fine-tuned by the airlines using them, along with their Standard Operating Procedures and
day-to-day working practices.

Proactiveness links again to EASA’s 2B and above categorisations, whereby the AI
can initiate its own tasks and shift or re-prioritise goals, giving the AI a degree of auton-
omy and agency (since it can act under its own initiative). However, in contrast to the
distinctive categorisations of EASA the HACO authors [89] suggest the concept of ‘sliding
autonomy’, wherein the human (or the system) determines the level of autonomy. This is
of interest in aviation in cases where flight crew or air traffic controllers, for example, may
be overwhelmed by a temporary surge in tasks or traffic, respectively, and may wish to
‘hand-off’ certain tasks (especially low-level ones) to an AI. This is effectively an update of
the Adaptive Automation concept.

The three HAIKU use cases are close to this notion of sliding or rather ‘flexible’
autonomy. In UC1 (startle response) the pilot can initiate and stop the support at any time,
depending on their situation awareness and the degree to which they feel in control. In UC2
(re-routing support) the pilots have many options in how to use the automation, whether
to find their own solution, accept the first one offered by the IA, or delve deeper into the
rationale behind the three airports offered. In UC4, the controllers stated that they would
likely use ISA in high workload situations, depending on their workload capacity and the
complexity of the traffic situation. This partial use was also to avoid ‘skill-fade’.

Predictability can refer both to the degree to which the pace of work of an AI is
understood, trackable, and manageable, to the degree to which an AI might ‘surprise’ the
humans in the team via its outputs. The former probably requires some kind of overview
display to know what the AI is doing and the progress on its tasks or goals. The latter
will depend on the amount of human-AI training afforded prior to teamworking in real
operational settings.

Observability refers to the transparency of the progress of the AI agent when resolving
a problem, and can be linked to explainability, though in practice the AI’s workings might
be routinely monitored via a dashboard or other visualisation rather than a stream of
textual explanations, with the user able to pose questions as needed.

Three additional HAT attributes are mentioned in [89] and are worth reiterating here:
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• Directing attention to critical features, suggestions and warnings during an emergency
or complex work situation. This could be of particular benefit in flight upset conditions
in aircraft suffering major disturbances, as in UC1.

• Calibrated Trust wherein the humans learn when to trust and when to ignore the
suggestions or override the decisions of the AI, an over-riding concern in UC2.

• Adaptability to the tempo and state of the team functioning, as in the controllers’
approach to using ISA in UC4.

With respect to Adaptability, one of the hallmarks of an effective team, it may be useful
to resurrect High Reliability Organisation (HRO) theory [90]. All five of the pillars of HROs—
preoccupation with failure, commitment to resilience, reluctance to simplify explanations,
deference to expertise, and sensitivity to operations—could well apply to Human-AI Teams.
HRO theory leans towards collective mindfulness of the team, and here is where it is
necessary to consider and contrast how humans think ‘in the moment’, compared to how
an AI might build up its own situation representation or context assessment.

4.2.2. AI Anthropomorphism and Emotional AI

Human-AI Teaming can be considered to be an anthropomorphic term [37], suggesting
that the AI is a team player, denoting human qualities to a machine. Anthropomorphism
relates to the identity we assign an AI system, and hence the degree of agency we accord
it. The more we ‘personify’ an IA, the more the danger of delegating responsibility to it,
or of surrendering authority to its logic and databases, or of basically second-guessing
ourselves rather than the AI. In this vein, it is worth recalling that AI systems are created
by people (data scientists), and there are many human choices, not to mention selecting
algorithms by trial and error, that go into development of AI systems, e.g., choice of training,
validation and test datasets, choice of hyperparameters, selection of most appropriate
algorithm, etc. [1].

The recent FAA Roadmap on AI [38] is explicitly against the personification of AI,
and given that AI has no sentience and will likely not do for some time, it is right to avoid
AI personification, especially in safety-critical operations. A key practical consideration,
however, is whether treating future AI systems as a team member could enhance overall
team performance. This is as yet unknown, but it leads to a second question of whether
we can tell the difference between a human and an AI. In a recent study of ‘emotional
attachment’ to AI as team members [91], most participants could tell the difference between
an AI and a human based on their interactions with both. Another study [92] examined
human trust in AIs as a function of the perception of the AI’s identity. The study found
that AI ‘teammate’ performance matters, whereas AI identity does not. The study authors
cautioned against using deceit to pretend an AI is a human. Deception about AI teammate’s
identity (pretending it is a human) did not improve overall performance and led to less
acceptance of AI solutions. Knowing it is an AI actually improved overall performance.

In a non-safety-critical domain study [93], two key acceptance parameters for emo-
tional AI were found to be the potential to erode existing social cohesion in the team, and
authority (impacts on team members’ status quo). As with other studies in this area, the
authors found people judged machines by outcomes. A further study [94] found that
monitoring people’s behavior and emotional activity (speech, gestures, facial expressions,
and physiological reactions), even if supposedly for health and well-being, can be seen
as intrusive. Such monitoring activities can be for good reasons, such as detecting and
combatting stress (e.g., UC1), fatigue and boredom monitoring, and for error avoidance,
and of course, productivity. Nevertheless, people may be uncomfortable with this level of
personal intrusion of their behavior, bodies, and personal data.
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Overall, therefore, preliminary indications are that aviation needs neither anthropo-
morphic (personified) nor emotional AI. What matters is the effectiveness of the AI in the
execution of its tasks.

5. Human Factors Requirements for Human-AI Systems
Having reviewed types of AI, levels of AI autonomy, and examples of prototype

Intelligent Agents, as well as Human Factors themes relevant to AI-based systems in
aviation, this section (Step 3) outlines the development of a preliminary set of Human
Factors requirements for future aviation HAT systems. A Human Factors Requirements
System for HAT systems should satisfy several requirements of its own:

1. It must capture the key Human Factors areas of concern with Human-AI systems.
2. It must specify these requirements in ways that are answerable and justifiable

via evidence.
3. It must accommodate the various forms of AI that humans may need to interact

with in safety-critical systems (note—this currently excludes LLMs) both now and
in the medium future, including ML and Intelligent Agents or Assistants (EASA’s
Categories 1A through to 3A).

4. It must be capable of working at different stages of design maturity of the Human-AI
system, from early concept through to deployment into operations.

Accordingly, in this section, the issue of how Human Factors can inform the different
stages in the design, development, and deployment life cycle of new HAT systems is consid-
ered first. Second, a framework or overlying architecture for HAT is presented, to group the
various requirements thematically. This will aid in their implementation in programming
and resourcing Human Factors integration into future HAT systems. Third, a sample of
the new requirements themselves, contextualised in HAT and autonomy-sharing terms in
such a way that they can be applied meaningfully by HAT system developers, is presented.
These are then applied and evaluated in Section 6 (Step 4).

5.1. HAT Requirements and a Design Life-Cycle Framework

In aviation, both in Europe and North America, the NASA system of Technology
Readiness Levels (https://www.nasa.gov/directorates/somd/space-communications-
navigation-program/technology-readiness-levels/ (accessed on 20 March 2025)) (TRLs) is
the most commonly used framework for aviation system design life cycle maturity and is
illustrated in simplified form in Figure 7.
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poor ‘fit’ to the human end user, and the only significant degree of freedom left to optimise
HAT performance will be training. Training end users to operate a poorly designed
system is a poor design strategy. Therefore, Human Factors requirements should ideally
be applied from the early concept stages onwards, until the system is operational. The
critical design stages, however, in terms of integration of Human Factors to deliver optimal
system performance, are TRLs 3-6, as these stages determine how the human-machine (AI)
interactions will take place.

Typically, TRLs 1-2 are concerned with early concept exploration. For Human-AI
System design, at this TRL usually the most important considerations focus on Roles
and Responsibilities, namely who (or what) will be in charge when the AI is operating.
Decisions about sense-making, such as how shared situation awareness will be estab-
lished, and primary human-AI interaction modes, e.g., ‘conventional’ (keyboard, mouse,
touchscreen, etc.) or more advanced (speech, gesture recognition) can be made, as well
as whether the AI will be used by a single person or a team. It is at this stage that key
design choices are made concerning the adoption of a Human-Centred Design approach,
including the use of end users in informing the early ‘foundational’ concept.

TRLs 3-4 add a lot more detail, fleshing out the concept’s architecture, and gaining
a picture of what the AI will look and feel like to interact with, via early prototypes and
walk-throughs of human-AI interaction scenarios. The area of sense-making is crucial here,
and communication and teamworking aspects will become clearer.

At TRLs 5-6 models and prototypes are developed iteratively until a full-scope demon-
stration is completed and tested in a realistic simulation with operational end users. This
period of design and development sees many issues ‘nailed down’ and solidified into the
design and operational concept (CONOPS), having been validated via robust testing with
human end users. Risk studies focus on errors and failures seen, as well as those that could
conceivably occur once the system is in operation.

TRLs 7-9 prepare the concept for deployment in real-world settings. This is the time to
consider in earnest the ramifications of entering a human-AI system into an operational
organisation, with requirements for competencies and training of end users, as well as
socio-technical considerations such as staffing, user acceptance, ethics, and well-being.
These latter issues can determine whether the system is accepted and used to its full extent.

After TRL 9 the system is in operational use. Since most AI systems are learning
systems, monitoring—particularly in the first 6 to 12 months—will be a critical determinant
of sustainable system performance.

5.2. The Human Factors HAT Requirements Set Architecture

Based on the literature review in Section 4, including the SESAR HPAP and the recent
EASA Guidance on Human Factors for AI-based systems, as well as the EU Act on AI,
eight overall areas have been identified, as shown in Figure 8 and outlined below.

1. Human-Centred Design—this is an over-arching Human Factors area, aimed at ensur-
ing the HAT is developed with the human end-user in mind, seeking their involvement
in every design stage.

2. Roles and responsibilities—this area is crucial if the intent is to have a powerful
productive human-AI partnership, and helps ensure the human retains both agency
and ‘final authority’ of the HAT system’s output. It is also a reminder that only
humans can have responsibility—an AI, no matter how sophisticated, is computer
code. It also aims to ensure the end user still has a viable and rewarding role.

3. Sense-Making—this is where shared situation awareness, operational explainability,
and human-AI interaction sit, and as such has the largest number of requirements.
Arguably, this area could be entitled (shared) situation awareness, but sense-making
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includes not only what is happening and going to happen, but why it is happening,
and why the AI makes certain assessments and predictions.

4. Communication—this area will no doubt evolve as HATs incorporate natural lan-
guage processing (NLP), whether using pilot/ATCO ‘procedural’ phraseology or
natural language.

5. Teamworking—this is possibly the area in most urgent need of research for HAT,
in terms of how such teamworking should function in the future. For now, the
requirements are largely based on existing knowledge and practices.

6. Errors and Failure Management—the requirements here focus on identification of AI
‘aberrant behaviour’ and the subsequent ability of human end users to detect, correct,
or ‘step in’ to recover the system safely.

7. Competencies and Training—these requirements are typically applied once the design
is fully formalised, tested, and stable (TRL 7 onwards). The requirements for preparing
end users to work with and manage AI-based systems will not be ‘business as usual’;
new training approaches and practices will almost certainly be required (e.g., pilots
and controllers who participated in UC1, 2 and 4 simulations stated they would want
specialised training).

8. Organisational Readiness—the final phase of integration into an operational system is
critical if the system is to be accepted and used by its intended user population. In
design integration, it is easy to fall at this last fence. Impacts on staffing levels and
levels of pay, concerns of staff and unions, as well as ethical and well-being issues are
key considerations at this stage to ensure a smooth HAT-system integration. This is
therefore where socio-technical considerations come to the fore.
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This eight-area architecture goes beyond the SESAR HPAP four-area structure (Roles
and Responsibilities, Interface Design, Teamworking and Transition) and has added new
sub-areas including trustworthiness, AI autonomy, operational explainability, speech recog-
nition and human-AI dialogue, Just Culture, etc. Many of the requirements from EASA’s
CS 25 1302 are evident at the specific requirements level but have been re-oriented or
augmented to focus on AI and HAT. The original requirements set was written before the
most recent EASA HAT guidance release, and since that time alignment efforts have been
made. The resultant HF Requirements set is significantly larger than the EASA one, as it
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deals with a number of areas and sub-areas outside EASA’s current focus (e.g., related to
roles and responsibilities organisational readiness, competencies, human agency, etc.). The
detailed structure is as follows, showing all subcategories and the number of requirements
in each of the total of 17 categories and subcategories (165 requirements in total, of which
51 are common requirements with EASA’s guidance):

1. Human-Centred Design (5)
2. Roles and Responsibilities

a. Human and AI Autonomy (7)
b. Balance of Human and AI Tasks (13)
c. Human Oversight (10)

3. Sense-Making

(a) Shared Situation Awareness (12)
(b) Trustworthy Information (12)
(c) Explainability (13)
(d) Abnormal Events, Degraded Modes and Emergencies (7)

4. Communication

a. Human-AI Dialogue (10)
b. Speech and Gestures (11)

5. Teamworking (11)
6. Errors and Failure Management (13)
7. Competencies and Training

a. New Competencies (9)
b. New Training Needs (9)

8. Organisational Readiness

a. Staffing (8)
b. User Acceptance (9)
c. Ethics and Wellbeing (8)

The relevance of the Human Factors areas to the different TRL are also highlighted in
Figure 8, to help the user adapt their evaluation approach. As illustrated in the figure, the
application of Human Factors areas to TRLs are not always clear cut, so some degree of
judgement must be used. For many projects, in early TRLs entire areas may be deemed
‘TBD’ (to be decided later) or even N/A (not applicable—for now) and returned to in
later design stages. For example, many research projects will not consider Human Factors
areas 7 and 8, although it is worth considering impacts on staffing early, since this can be
a ‘deal-breaker’ for any project.

5.3. Detailed HAT Requirements

Table 1 shows a selection of the HAT Human Factors requirements developed and
applied in the HAIKU project. The selection highlights newer requirements, those of
particular relevance to HAT and Intelligent Agents. The full set of requirements also
includes ‘conventional’ requirements (e.g., avoid clutter in the human-machine interface
displays) that already exist in contemporary HF Requirements systems (EASA, SESAR,
FAA, etc.), since these must still be applied to HAT systems to ensure usability etc. The
requirements in Table 1 focus on the first six areas of the HAT architecture in Figure 8,
as this is where there has been most application with the use cases, which are mainly
TRL 3-6, such that training and competencies (area 7) and organisational readiness (area 8)
considerations have yet to occur.
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Table 1. Human-AI Teaming Human Factors Requirements (extract).

New HAT Requirement HUMAN FACTORS AREA Origin HF Area

1. Are end user opinions helping to inform and validate the design concept, as part of an integrated project
team including product owner, data scientists, safety, security, Human Factors and operational expertise? HUMAN-CENTRED

DESIGN

Joint Cognitive Systems/
Cognitive Systems Engineering/
Human-Centred Automation (HCA)

2. Are end users involved in any hazard identification exercises (e.g., HAZOP, STPA, FRAM etc.)? SHELL, STAMP, HAZOP &FRAM

3. What is the overall level of autonomy—is the human still in charge?

ROLES and
RESPONSIBILITIES

➢ Human & AI
Autonomy

➢ Balance of Human/AI
Tasks

➢ Human Oversight

Levels of automation/adaptive automation
HCA
HCD

4. If the level of autonomy changes dynamically, has it been determined when/why it changes?

5. If there is task-switching, is it controlled by the human, by the AI, or a mixture of both?

6. In the case of AI control, can the human reject a task?

7. If the AI cedes control to the human unexpectedly, is there enough information for the human to safely
take control?

Situation Awareness
HCA
Ironies of Automation/AI

8. Does the human have a mental model of how the AI performs each task?

Joint Cognitive Systems/
Cognitive Systems Engineering/
Situation Awareness
HACO–goal awareness and predictability

9. Can the human monitor and adjust the AI’s goal formulation/prioritisation?
HCA
Fitts List
HACO goal awareness

10. If human-AI negotiation is possible, does the human make the final call?

11. Can the AI detect poor decision-making by the user and offer alternatives?

12. Can the human retain a strategic overview of the tasks and system performance/safety?
HCA, Complex Systems, SA, Sense-Making,
Fitts List
HACO goal alignment

13. Does the AI build its own situation representation?

SENSE-MAKINGShared
Situation Awareness

Sense-Making
JCS, HCD, HCA
Situation Awareness (SA)
Ecological Interface Design
HACO

14. Is the AI’s situation representation made accessible to the end user, via visualisation and/or dialogue?

15. Does the AI-human interface reinforce the end user’s situation awareness, so that human and AI can remain
’on the same page’?
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Table 1. Cont.

New HAT Requirement HUMAN FACTORS AREA Origin HF Area

16. For complex situations, does the AI offer a diagnosis and rationale, along with the problem’s root cause and
solution, and a prediction of likely operational consequences?

Complex Systems (KBB)
SA (current/predictive)
Ironies of Automation/AI

17. Is it made clear to the end user when the alerting situation raised by the AI is resolved, or if actions taken are
not resolving the threat?

HCD, HCA
SA & SM

18. Is the information or decision provided in a timely fashion for the human to consider and ‘weigh’ it before
acting or accepting it?

Trustworthy Information

JCS/CSE, HCA
HCD

19. Is the information/decision offered accompanied by uncertainty estimates upon request?
Sense-Making, HCA
Bias and Complacency

20. Can the human modify the AI’s parameters to explore alternative courses of action?
JCS/CSE, UCD, HCA, HACO
Sense-Making
Complex Systems/KBB

21. If the AI is making trade-offs, are these made visible to the human? Ironies of Automation/AI, HCA

22. Can the end user alter key parameters the AI is optimising?
Sense-Making, JCS/CSE
Situation Awareness, HCA

23. Are end users aware of the data sources the AI uses to build its situation representation
SA and SM
Bias & Complacency

24. Can the human query the information/decision via an explainability function?

Explainability

Sense-Making

25. Does explainability detail how the advice was derived, in end user (operational) terms?
HRO theory: sensitivity to operations, JCS,
Sense-Making, SA

26. Is explainability multi-levelled, based on different levels of abstraction, including context of the AI’s goals
and ‘reasoning’ available to the end user, any historical perspective underlying the AI’s reasoning and key
data sources it has accessed, so the user can fully judge its appropriateness to the situation, and progressively
determine how far (or when) to trust the AI?

Complex Systems/KBB
HRO–reluctance to simplify explanations
Big 5 (shared mental models)
Sense-Making, SA

27. Can the AI explain both its current goal and longer-term strategy if it has one?
Sense-Making
Big 5 shared mental model

28. Can the human view both data that were used and data that were ignored by the AI, e.g., anomalies
or outliers?

HCD/HCA
Ironies of Automation/AI
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Table 1. Cont.

New HAT Requirement HUMAN FACTORS AREA Origin HF Area

29. Does the level of human workload enable the human to remain proactive rather than reactive, except for
short periods?

Abnormal Events and
Emergencies

Mental Workload
Ironies of Automation/AI

30. Can the human retain situation awareness in emergencies/abnormal events, including what the AI is doing
(and why)?

Complex Systems/KBB
Ironies of Automation/AI

31. Is it clear to both human and AI which tasks are safety-critical, and when safety is being threatened? Safety Culture

32. If natural language is used, how is context-sensitivity ensured, so that misunderstandings are avoided?

COMMUNICATIONS

Big 5 (closed-loop comms; shared mental
models) HCA, HCD, UCD
HACO
Emotional Mimicry
Non-Personification of AI

33. Does the AI communication mode, whether oral or audio-visual, avoid the use of emotional mimicry
(i.e., mimicking human emotions)?

34. Are humans made aware of what human performance aspects the AI may be monitoring or recording,
e.g., speech (to detect stress or fatigue), gestures, psychophysiological parameters (EEG, heart rate measures,
skin conductance, eye movements, etc.?

35. Are the boundaries of the AI’s language capabilities and limitations made known to the user?

36. Is the dynamically evolving AI-derived situation representation communicated to the entire team to ensure
coherent team situation awareness?

Teamwork

CRM/TRM/BRM
The Big 5
SA and Sense-Making
Complex Systems/KBB

37. Does the design optimise Human AI team resource management and minimise team functioning errors?

38. Are there sufficient skilled human crew to operate or recover or stabilise the system (i.e., the aircraft, air
traffic situation, etc.) in case of AI failure or erroneous behaviour?

39. Is the AI robust against edge and corner cases, data bias, and data poisoning?
ERROR and FAILURE
MANAGEMENT HAZOP/STPA/FRAM

Bias and Complacency
SA and SM
Complex Systems/KBB
JCS/CSE
ASRS, HFACS, SHIELD
Swiss Cheese
Accident Aetiology

40. Is the human trained on AI error modes and how to verify AI results?

41. Has the human seen examples of AI incorrect information/advice in simulation training?

42. Are there sufficient ‘unfiltered’ (non-AI) displays of critical functions to allow the human to verify
independently true system status?

43. Are logs available for post-failure analysis, to know what happened and avoid recurrence of the failure?
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Table 1 also indicates the principal Human Factors themes that have influenced the
various HAT requirements. As with conventional HF Requirements sets, there is often not
a one-to-one relationship between a theoretical strand of Human Factors and an industrial
HF requirement. Rather, the HAT requirements are a reflection of certain HF theoretical
bases, contextualised via the use cases available, integrated with insights from the recently
emerging HAT literature.

6. Application of Human Factors Requirements to Three HAT Prototypes
The aim of the HAT HF requirements questions is to help the designers, developers

and Human Factors specialists realise and deliver a highly usable and safe Human-AI
system, one that end users can use effectively and will want to use (avoiding misuse, disuse,
and abuse, as mentioned earlier). The HF requirements set was applied to the three HAIKU
use cases described earlier, between December 2023–January 2025, typically taking a full
day with the respective design teams. An extract from the evaluations is shown in Table 2
for a sample of the questions from the first four Human Factors Areas.

For UC1, at several points during the HF Requirements review with the design team,
potential improvements were derived for the AI system, in terms of how it is visualised
and used by the pilot. In total, 27 issues were raised for further consideration by the
design team, in terms of potential changes to the design or further tests to be carried out
in the second set of simulations (Val2). A number of requirements were deemed ‘not
applicable’ to the concept being evaluated, and many of the requirements from the last
two areas (Competencies and Training; Organisational Readiness) were not answerable at
this design stage.

The Human Factors requirements evaluation process for UC1 has resulted in a number
of refinements to the HAT design, including: AI display aspects related to the ‘on/off’
status of the AI support; use of aural SA directional guidance; application of workload mea-
sures; consideration of how to better maintain a strategic overview during the emergency;
pilot trust issues with the AI; consideration of the utility of personalisation of the AI to
individual pilots; consideration of potential interference of the AI support with other alerts
during an emergency; and use of HAZOP for identification of potential failure modes and
recovery/mitigation measures. More generally, it raised issues that could be tested in Val2.

In all three use cases, the requirements evaluation process was found by the partic-
ipating design teams to be useful and even provocative in elaborating and refining the
concept: e.g., in UC2 on Roles and Responsibilities and Sense-Making; in UC4 on the detail
of Human-AI Teaming interaction as well as Error and Failure Management, and in a
further airport use case (UC5 in HAIKU, EASA category 1A/1B, at TRL 7) on Sense-Making
(including the usability and explainability of the system) and Organisational Readiness
(e.g., staff allocation to the AI, new competencies and training requirements, etc.). The
product design teams found the approach to be straightforward and added value to the
design process.
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Table 2. Example responses to HF Requirements Questions from HAIKU Use Cases.

Human Factors Requirement Question
Y/N
N/A
TBD

Justification

Human-Centred Design

Are licensed end users participating in design exercises such as
focus groups, scenario-based testing, prototyping, and
simulation (e.g., ranging from desk-top simulation to full
scope simulation)?

Y

For UC1, ENAC pilots and commercial airline pilots are involved in Val1 (five pilots) and Val2
(12 pilots) real-time simulation exercises in a static A320 cockpit simulator. For UC2, 12 pilots
participated in simulations. For UC4 a number of controllers have participated in design activities
and real-time simulations in Skyway’s Tower simulator in Madrid.

Are end user opinions helping to inform and validate the design
concept, as part of an integrated project team including product
owner, data scientists, safety, security, Human Factors, and
operational expertise?

Y

Pilots are involved in UC1, and the product owner is a pilot. Additionally, there are Data Science
and Human Factors experts in the design team. Security is outside the scope of HAIKU, and UC1
is TRL4-5. For UC2, a Thales test pilot is involved with the design team. For UC4, the product
owner is a Tower air traffic supervisor.

Are end users involved in any hazard identification exercises
(e.g., HAZOP, STPA, FRAM etc.)? Y All three use cases have undertaken HAZOPs with end users (pilots and controllers) who have

experienced the AI in simulations participating in the HAZOP process.

Roles and Responsibilities

Are there any new roles, or suppressed roles? Y For UC1 this is a Single Pilot Operation (SPO) concept study, so one flight crew member is no
longer in the cockpit. There are no staffing or role impacts on UC2 or UC4.

What is the level of autonomy—is the human still in charge? Y The end user remains in charge in all three use cases.

Does this level of autonomy change dynamically? Who/what
determines when it changes? TBD

In UC1 the IA is triggered by detection of pilot startle; the pilot can activate/deactivate the IA at
any time. In UC2 the IA is triggered by certain circumstances, and the pilots can ignore it if they
choose to do so. For UC4 the IA suggests changes when required, and if the ATCO does nothing
the change of landing/take-off sequence will be automatically implemented. The ATCO can also
switch the IA on and off.

Are the new/residual human roles consistent, and seen as
meaningful by the intended users? Y

Yes, for pilots in UC1 the AI is like a clever flight director or attention director, but the pilot
remains in control. For UC2 the IA’s advice on three airports is very quick, with the supervised
training still being fine-tuned to ensure the recommendations fit with pilots’ expertise and
preferences. For UC4 the advice is seen as useful, giving them forewarning of
arrivals/departures pressures.
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Human Factors Requirement Question
Y/N
N/A
TBD

Justification

Sense-Making

Is the interaction medium appropriate for the task, e.g.,
keyboard, touchscreen, voice, and even gesture recognition?

Y/
TBD

Startle and SA support colour-coding was appreciated in Val 1. Supporting displays on the
Electronic Flight Bag (EFB) were not used due to the emergency nature of the event. Red was seen
as too strong. Voice was suggested to back up the visual direction of SA (this has since been
implemented). Changes have been tested in Val2 experiment (still under analysis). For UC2 the
touchscreen display is seen as appropriate, and for UC4 display elements have been integrated
into their normal radar displays.

Does the AI build its own situation representation? Y

Yes, for UC1 coming from the aircraft data-bus, and from the pilot’s attentional behaviour
(eye-tracking). Context is also from the SOPs (Standard Operating Procedures) for the events. For
UC2 extensive details of all European airports plus dynamic weather information, plus aircraft
characteristics and passenger manifests, as well as remaining fuel, altitude, etc., are used to
compute optimum alternates. For UC4 it is computing times to land and separation distances for a
specified single-runway airport (Alicante in Spain), with a database of tens of thousands of
landings in varied conditions to render predictions accurate.

Is the AI’s situation representation made accessible to the end
user, via visualisation and/or dialogue? Y

For UC1, the EFB (electronic flight bag) to the captain’s left summarises the AI’s situation
assessment. For UC2 the results of the three airports selected are shown on the moving map
display and in an icon-based display, with a further explainability layer accessible to the flight
crew. For UC4 only the output is shown, with a single line of explainability (usually, this is
enough), due to the short timescale for accepting or rejecting the advice.

Does the AI-human interface reinforce the end user’s situation
awareness, so that human and AI can remain ’on the same page’? Y

Pilots in UC1 felt it helped their SA and speed of regaining a situational picture. In UC2 the icon
display and explainability layer unpack the AI’s computation, showing which factors were
prioritized. This helps when the pilots are unfamiliar with the airports available. For UC4 the
display is clear and sharpens their own SA and ‘look-ahead’ time (Level 3 SA).

Can the human modify the AI’s parameters to explore
alternative courses of action?

N/
TBD

In UC1, no. The pilot can follow an alternative course of action, though there is no ’interaction’ on
this with the AI, as it is an emergency. In UC2 the flight crew can modify the goal priorities of the
IA. In UC4 the ATCOs cannot modify the parameters.
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Table 2. Cont.

Human Factors Requirement Question
Y/N
N/A
TBD

Justification

Is at least some operational explainability possible, rather than
the AI being a ‘black box’? Y

In UC1, explainability is via the EFB. However, due to the very short response times in a loss of
control in flight scenario, pilots had little time for explainability in the two simulations. This could
differ in a scenario where the event was less clear cut, e.g., electronics failures, bus-bar failures,
automation malfunction, etc. For UC2, there is a high degree of explainability. In UC4, the
explainability needs are basic (aircraft on approach coming in too fast/too slow, etc.) and are
deemed sufficient.

Does the AI possess the ability to detect human errors or
misjudgement and notify them or directly correct them? Y

In UC1, the AI is intended to detect temporary performance decrement due to startle, and to guide
the pilot, but does not go as far as correcting his/her action. However, the dynamic highlighting
of key instruments, along with callouts (e.g., “vertical speed!”) could be considered a form of error
correction. UC2 has the potential to aid error detection, e.g., failing to consider one of the variables
in airport selection, since all the key parameters are used and displayed by the IA. UC4 has the
potential to correct errors of judgment and memory failures/omissions or vigilance failures, or at
the least alert controllers to something they have overlooked or misjudged.

Does the level of human workload enable the human to remain
proactive rather than reactive, except for short periods? Y

For the types of sudden scenarios in UC1, the pilot is in reactive mode. The answer ‘yes’ is given
as it is a short period, and the aim is to reduce cognitive stress, giving them more ‘headspace’ to
deal with the event. For UC2, it is a very clear ‘yes’, since it will save them at least 10 min and
considerable work for the PNF (pilot not flying/first officer). For UC4, the ATCOs suggested its
primary benefit may be when workload increases.

Can the human detect errors by the AI and
intercede accordingly? Y

In all three simulations, pilots noticed if something was incorrect, usually due to an error in the
IA’s database. Such errors should largely be eradicated by TRL 9. No edge cases or hallucinations
nor alignment errors have arisen so far.

Does the human trust the AI, but not over-trust it? Is the human
taught how to recognise AI malfunction or bad judgement? Y

Pilots and controllers did not over-trust the IAs, knowing they were prototypes. They were not
taught how to recognize aberrant IA behaviour. A general comment, though, from many end
users, is that if such tools are to be implemented in the cockpit or ATC tower, they must be
trustworthy and highly reliable; one serious mistake would irrevocably break trust and lead to
non-use of the IA.
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Additionally, the requirements evaluation process aided the enrichment of the collec-
tive understanding of the HAT design teams, and clarified the IA’s intended operational
modes of use, as well as integrating Human Factors into the HAT design. There is an inten-
tion to apply the requirements set to one final Urban Air Mobility use case (TRL 1-2, EASA
category 3A), to see how useful the requirements are at such an early design stage. All
results of these applications will be published in the final documentation for the HAIKU
project at the end of 2025 [95].

7. Conclusions
A provisional HAT Human Factors requirements system comprising eight Human

Factors areas and 165 detailed requirements questions has been developed and applied to
three contemporary aviation HAT research use cases. The application of the requirements
approach has been found to be both relevant and useful by the use case owners and design
teams and has resulted in enhancements and refinements to the HAT system designs. In
this sense, the approach appears to be fit for purpose, and scalable to projects of differing
levels of AI autonomy and design maturity.

However, this is but a preliminary step. There is much research to do and experience
to be gained with HAT systems and the integration of Intelligent Agents into safety-critical
aviation operational settings. Certain Human Factors areas stand out as priorities for
research, e.g., Human-IA Teamworking arrangements, sensemaking, shared situation
awareness and operational explainability, AI error and failure management, and how to
train end users to work effectively with IAs. As more HAT prototypes are developed and
tested, experience of how best to design HATs will accrue, and the requirements can evolve
in tandem, even adding new HF areas or sub-areas where advisable.

As a final conclusion, all the HAIKU use cases are augmenting human performance
and capabilities, rather than seeking to supplant human capabilities in aviation systems.
This is not only to maintain human agency and final authority, but also because it appears to
be the best way to optimize overall aviation transportation system safety and performance.
Human-AI Teaming therefore appears a useful and potentially valuable research and
development avenue to pursue.
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