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Abstract:
Task 5.1 of HAIKU focuses on explainable AI and defines implementation strategies for
the Use Cases. In this deliverable a general overview of XAI together with strategies
for the Use Cases is presented.
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Executive Summary
Task 5.1 of HAIKU aims to generate strategies of XAI (Explainable Artificial Intelligence)
for the use cases defined in the scope of the project. The first step to achieve this goal
was to look into concepts and methods of XAI in a broader scope and gather
implementation methodologies. When designing an AI-powered system, the
requirement analysis for XAI is usually conducted in activities related to human-AI
teaming (HAIT/HAT). The variability in needs of XAI, makes it almost impossible to have
a universal methodology for requirement analysis, rather each case must be analyzed
and evaluated on its own.
That said, it is not impossible to provide methodologies and grouping for XAI,
especially in similar applications across domains. Two main categories which were
investigated are:

● Interaction with XAI: it focuses on interaction between a human and a potential
AI system,

● Methods of building XAI models: it studies the currently available methods of
training and building XAI models. This kind of categorization provides an
overview of existing methods and trends which can be adopted for any case.

Nevertheless, this approach does not provide a requirement analysis for use cases to
generate strategies. To that end, construal level theory (CLT) was adopted to provide
a detailed insight into the use cases. The results were described in a story-based
structure for each use case.
All the results together provide a sufficient pool of information to generate strategies,
implementation plans, and evaluation methodologies for the use cases.

As part of Task 5.1, one webinar on XAI was organized, to build shared understanding
in the consortium.
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Introduction to explainable AI (XAI)
Perhaps one of the earliest research attempts in XAI goes back to The Defense
Advanced Research Projects Agency (DARPA) XAI program (DW, 2019) which was
focused on developing AI systems that can provide meaningful explanations for their
decision-making process. Several objectives for XAI were mentioned in the program
such as enhancing trust, transparency, and accountability in AI systems by enabling
human users to understand the rationale behind AI-generated outputs. In high-stakes
scenarios where the consequences of the AI decisions can have significant impacts,
explainability becomes crucial for operational confidence and effective
decision-making in unpredictable situations, perception and reasoning, judgment and
recognition

An example of XAI, is perhaps easiest to come by in visual classification and object
detection. Vasu et al. (Vasu et al., 2021) used saliency maps (or heat maps) to highlight
regions of interest for the users and incorporating user feedback (human-in-the-loop)
(Figure 1) in the form of a classifier which re-ranks the results.

Figure 1: Saliency maps for image classifications proposed by Vasu et al.

However, as task complexity grows, so do the requirements for XAI. In essence, it is
important to identify the answers to the following questions:

● What is being explained?
● Who is being explained to?
● How is it being explained?

The answers seem easy to find, however with increased complexity of use cases and
special conditions surrounding each (e.g. Human-AI teaming principles etc. ) it is not
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possible to find universal answers for these questions. Regardless, some of DARPA’s
key takeaway messages were useful as general principles as to what qualities are
good to have in the answers:

● For the explanation to improve performance and safety objectives during the
development and operations, the task must be difficult enough that the AI
explanation helps.

● User performance may be hindered by the cognitive load required to interpret
explanations.

● Measures of explanation effectiveness can change over time.
● Advisability can improve user trust significantly over explanations alone.
● Users prefer systems that provide decisions with explanations over systems

that provide only decisions. Tasks where explanations provide the most value
are those where a user needs to understand the inner workings of how an AI
system makes decisions.

Close collaboration across multiple disciplines is crucial for the effective development
of XAI techniques. This collaborative effort involves disciplines such as computer
science, machine learning, artificial intelligence, human factors, psychology, safety
assessment, development process assurance and more. However, it can be
challenging to foster such collaboration, as researchers often tend to focus on their
individual domains and may need encouragement to work across disciplines.
The field can be categorized into two broad categories: model transparency and
post-hoc explanations (Xu et al., 2019)(Figure 2).

Figure 2: Two groups of Explainable AI: transparency and post-hoc
Model transparency methods aim to address the challenge posed by black box
models, which lack interpretability and explainability. These methods focus on
designing AI models that inherently provide interpretable and explainable outputs,
making the decision-making process transparent from the model’s architecture and
internal mechanism. It can be argued that transparency method often involves using
simpler models, such as decision trees or rule-based systems, that offer clear and
understandable reasoning.
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On the other hand, post-hoc explanations involve providing explanations for complex
AI models that are already in use, without modifying their internal structure. These
techniques analyze the model's behavior and generate explanations retrospectively,
offering insights into why certain decisions were made.
Both approaches have practical utility and can be implemented in real-world scenarios,
depending on the specific requirements and constraints of the application. By
understanding these different categories, researchers and practitioners can explore
and deploy the most suitable XAI techniques to enhance transparency, trust, and
interpretability in AI systems while tackling the black box model problem.

Figure 3: Three types of explanation for a DNN. a) Networks model transparency b) Semantics of the
network component, neuron activation and object parts c) Human readable explanations

Figure 3 demonstrates the abstract ideas of transparent and post-hoc methods in a
Deep Neural Network (DNN). The network’s functionality and black-box structure is
displayed in the form of tree-like structures and neuron activation effect whereas the
explanation about the output is described in text format to the user.
There are other ways of interpreting XAI and the concept of explanation. For instance
Baber et al. (Baber et al., 2021a, 2021b) developed a model for XAI in which it
demonstrates the occurrence of different types of explanations, each requiring distinct
forms of support. In essence, an explanation involves a consensus between the
explainer and explainee on the features in data sets or a situation that demands
attention and why these features are relevant. To capture the levels of relevance, three
tiers are proposed:

● 'Cluster,' where a group of features typically co-occur
● 'Belief,' defining reasons for the occurrence of such a cluster;
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● 'Policy,' justifying the belief and linking it to action.
The agreement on features and relevance relies heavily on the knowledge and
experience of both the explainer and explainee, necessitating alignment during the
explanation process. Thus, 'Explanation' becomes the process through which common
ground is established and upheld. Based on their framework, the following guidelines
are suggested:

● Explanations should emphasize Relevance by illustrating the relationship
between features of a situation and the event being explained, remaining
plausible according to a concept of Relevance agreed upon by the Explainer
and Explainee.

● Explanations should encompass relevant Features by reaching a mutual
understanding between the Explainer and Explainee regarding key features of
the situation.

● Explanations should be Framed to suit the audience, aligning the explanation
with the explainee's comprehension of the situation and objectives.

● Explanations should be interactive, actively involving the explainee in the
explanation process.

● Explanations should be (where appropriate) actionable, providing the explainee
with information that can be used to enhance future actions and behaviors.

After examining the resources available for XAI and considering the diverse use cases,
our initial focus was on identifying methods with practical utility. This approach led us
to uncover concepts and interaction methods with XAI, along with adaptations to
existing ML/DL frameworks for building explainable AI solutions, which were presented
and discussed in a webinar. Moreover, to adopt a unifying storytelling approach for
requirement analysis across all use cases, Construal Level Theory (CLT) was utilized.
By applying CLT, we described the function of XAI in each use case based on the
nature of the operation, providing valuable insights into tailoring XAI solutions to
specific application domains.
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Methodologies for XAI
The contents in this section were presented in detail in the XAI webinar conducted
within the HAIKU Project to provide a better understanding of the concept and build a
common basic knowledge on XAI within the consortium members. It was mainly
focused on practical aspects of XAI, namely interaction and existing frameworks. XAI
as a concept in human-AI teaming, can be analyzed in several ways, each focusing on
the one or several aspects of a use case. The focus in Task 5.1 was kept on operational
explainability, which excludes the black-box model explainability.

Interaction with XAI
Interaction with XAI refers to the process of engaging with and utilizing the
explanations generated by AI systems to gain insights into their decision-making
process. When AI systems provide explanations for their decisions or predictions,
users can interact with these explanations to better understand the underlying factors
and reasoning behind the AI’s output. The interaction concepts are derived from the
classic HCI (Human-Computer Interaction)(Hornbæk and Oulasvirta, 2017) and
adopted to AI (Chromik and Butz, 2021):
Interaction as transmission focuses on maximizing the flow of information through a
noisy channel. The interaction involves choosing the most suitable message for
transmission from a set of available messages. As an example, Alqaraawi et al.
(Alqaraawi et al., 2020) explores the effectiveness of saliency map explanations for
convolutional neural networks through a user study. The paper specifically focuses on
evaluating the quality and usefulness of saliency map explanations from a user
perspective. It examines how well users can interpret and trust these explanations, as
well as their impact on users’ understanding of CNN predictions.
Interaction as dialogue describes a cyclical communication process between a
computer and a human. The interaction occurs in stages, with the aim of ensuring a
correct mapping between user intentions and computer functions. It acknowledges
that a single explanation may not be enough for full understanding, and instead,
emphasizes providing natural and accessible explanations. An example would be Kim
et al. (Kim et al., 2020) in which they introduce an Explainable User Interface (XUI) that
allows users to ask factoid questions about charts using natural language.
Interaction as control tries to achieve a fast and steady convergence of the
human-computer system towards a desired state. Inspired by control theory, the
interaction aims to adjust a control signal to reach a specific level and continuously
update its behavior based on feedback. It has two separate target groups: AI Experts
and AI Novices. For AI experts, explanations are provided on an abstract level using
numbers and visualizations and XUI is a standalone application that facilitates this
interaction whereas XUIs aim to effectively communicate technical features of the ML
model to non-technical users.
Interaction as Experience attempts to understand human expectations towards a
computer system. It is closely linked to user experience (UX), which includes person’s
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emotions, feelings, and thoughts formed before, during, or after interacting with the
system. Yin et al (Yin et al., 2019) for instance, demonstrates that a user’s trust is
influenced by prior information about the AI’s predictive accuracy, even after multiple
interactions.
Interaction as optimal behavior centers on adapting user behavior to align with their
tasks and goals during system interactions. It acknowledges the constraints and
tradeoffs users face in these interactions and is based on the principle of bounded
rationality, in order to avoid seeking solutions due to cognitive limitations rather than
optimal ones.
Interaction as tool use enhances the user’s abilities beyond the capabilities of the tool
itself. AI can serve as a tool for learning, particularly in the context of XAI. This
interaction concept enables humans to discover concealed patterns and valuable
insights in domain-specific data. To support this learning process, explanations play a
crucial role and are necessary. Paudyal et al. (Paudyal et al., 2020) presents an
interactive XUI for a computer-vision-based sign language AI where the textual
explanations provide learners with feedback on the location, shapes, and movements
of their hands.
Interaction as Embodied action is mainly reflected as a symbiotic relationship with
autonomous systems. Real-time communication of capabilities and intentions
becomes essential for achieving common goals. XUIs enable bidirectional influence
between humans and AI agents. Tabrez et al. (Tabrez et al., 2019) introduce an AI
agent that analyzes a human collaborator’s game decisions in a collaborative game.
The AI agent verbally interrupts the human if the common goal becomes unattainable
due to a wrong move. It dynamically builds a theory of mind of the human and offers
tailored explanations to correct their understanding of the game situation.

XAI models
In practice, XAI models are a collection of ML/DL models trained with varying network
structures. They help understand the decisions or predictions made by the models and
provide insight into the relationship between input and output of the models.
Therefore, it is important to have terminology which describes the characteristics of
such models.
Interpretability and explainability are two key aspects of understanding AI models and
their decision-making processes.

● Interpretability refers to a model's ability to associate a cause with an effect,
providing insight into why a certain decision was made. A model is considered
interpretable when it can consistently produce the same outputs for the same
inputs, allowing users to comprehend the relationships between input features
and the resulting predictions. On the other hand, explainability goes beyond
interpretability and involves identifying the specific features within the
interpretable domain that contributed to a particular decision for a given
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example. It encompasses the collection of features that played a role in
producing the decision outcome.

● Explainability delves into the finer details of the decision-making process,
providing a more comprehensive understanding of which features influenced
the model's output for a specific instance.

That said, certain models are considered to have intrinsic interpretability (white-box
models), which means that they possess inherent interpretability due to their simple
and transparent structure. These models are designed in a way that facilitates human
comprehension of their decision-making process, making them inherently interpretable
without the need for additional post hoc analysis. The simplicity of their architecture
allows for a clear understanding of the relationships between input features and
output predictions, enabling users to gain insights directly from the model's design.
An example for an intrinsic interpretable model are decision trees (Figure 4). These
models follow a specific set of rules, creating a tree-like structure with nodes
representing decision points and edges representing the flow of decisions. Decision
trees are inherently explainable due to their transparent structure, making it easier to
understand how they arrive at specific predictions. One way to visualize the
interpretability of decision trees is through tree decomposition, which involves
breaking down the decision paths and tracking the rules followed at each node. This
visualization helps users comprehend the sequence of decisions made by the model to
reach the final prediction. Additionally, decision trees provide a feature importance
metric, calculated using variance analysis.

Figure 4: A decision tree example.
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Post hoc interpretability on the other hand, also known as model-agnostic
interpretability, refers to a set of interpretable methods that analyze machine learning
models after they have been trained. These methods are versatile in their application,
as they can be used with both intrinsically interpretable (white-box) models and
complex black-box models. Regardless of a model's inherent interpretability, post hoc
interpretability treats the machine learning model as a black box, probing its internal
workings and generating explanations for its decision-making process. By analyzing
the model retrospectively, post hoc interpretability techniques offer insights into how
the model arrived at specific predictions, promoting transparency and understanding
even in cases where the underlying model may be highly complex and difficult to
interpret directly. This introduces the local and global terms for the model. Where local
methods aim to explain individual predictions made by machine learning models,
global methods aim to explain the overall behavior and characteristics of the entire
machine learning model. A summary table (Table 1) of the methods and their features
is provided below.

Interpretable Models Global Model-Agnostic Local Model-Agnostic
Decision Trees Partial Dependence Plot Local surrogate models

(LIME)
Linear Regression Permutation Feature

Importance
Counterfactual
explanations

Logistic Regression SHAP SHAP
Support Vector Machines

(SVM)
Naive Bayes

K-nearest Neighbors
Table 1: A summary of explainable models
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Construal Level Theory
Proposed in 2012 by Trope and Liberman (Trope and Liberman, 2012), CLT is a
psychological framework that provides insights into how individuals mentally represent
and interpret events, objects, and information based on their psychological distance.
CLT argues that people's construal or mental representations of different aspects of
their experiences are influenced by factors such as temporal distance (how far into the
future an event is perceived), spatial distance (how physically close or distant an
object or event is perceived), social distance (how emotionally close or distant a
person or group is perceived), and hypotheticality (how likely or certain an event is
perceived to occur).
At the core of CLT is the idea that individuals can construe objects and events at
different levels of abstraction, ranging from concrete and specific to abstract and
general. At higher levels of construal, people focus on the broader and more abstract
aspects of a situation, enabling them to identify general patterns and principles. On
the other hand, at lower levels of construal, individuals pay attention to specific details
and immediate consequences.
CLT helps understanding decision-making processes, risk perception, persuasion
techniques, intergroup relations, and goal pursuit. The theory provides a framework to
comprehend how individuals perceive and process information, make judgments, and
behave based on their mental representations of events and objects at different
psychological distances.
McDermott and Folds (McDermott and Folds, 2022), applied CLT to design of
informational systems by developing a language called "RECITAL" to facilitate the
information flow in distributed human-machine teams, modeled as a control hierarchy.
The objective is to define the data, services, and user interfaces that allow humans to
create, edit, query, and understand complex operational tasks, such as rules, intent,
decisional authority, and related control actions, while interacting with each other and
intelligent machines. The research explores three foundational concepts: formalizing
the “RECITAL" language based on intent, rules, and delegated authority; applying it to
established models of human-machine distributed teams; and using construal level
theory from social psychology to guide information abstractions. The ultimate goal is
to conceptualize a standard information model to support intentional design of
human-machine teams.
It is important to note that the authors (McDermott and Folds, 2022) also exploit the
hierarchical information flow (similar to military) in human-machine teaming scenarios.
As it is derived from social psychology, it examines people's preference for abstract or
concrete information based on psychological distance, which can be related to time,
space, task relevance, or other interests. The level of information abstraction versus
concreteness may be reflected in the comprehensiveness and level of detail of the
presented information elements.
For informational systems, a six-layer model (Table 2) was designed which links
construal levels to related information abstractions. It is described as a progressive
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measurement information model, where increasing CLT numbers denotes
progressively increasing detail of information.

Level of
abstracti

on

Type of
information/const

rual

Content/measureme
nt model

User information needs
and consumption time

CLT 1 Executive
summary/main
claim

This key outcome
was/will be achieved
as shown by these
key indicators

Provide further definition
of entities in the plan;
provides success or failure
indicators of the plan/
~10s

CLT 2 Executive mission
review/The main
reason

CLT1 + because of
these key causal
effects

+ provide backstories for
key entities, spatial and
temporal aspects of the
mission; drill down the
additional details for the
critical selected mission
aspects/ ~30s

CLT 3 Mission
summary/The
justification

CLT2 + because in
the full causal model
these paths are of
greatest importance
(magnitude)

+ provide advisories and
alerts related to changing
context of mission as
related to tasks at
hand/~5min

CLT 4 Mission brief/the
basis of
justification

CLT3 + because here
is the full
measurement model

+ provide links to
alternative planning and
tasking if determined by
context/~30min

CLT 5 Mission plan or
report/A full
summary of the
data

CLT4 + because here
is the time-step
history of all the
measurements

As supplied situationally to
one of the levels
above/~60min

CLT 6 Mission details/all
the data

CLT5 + and here are
all the anomalies and
alternatives
considered

As supplied situationally to
one of the levels
above/>60min

Table 2: six-layer model of CLT for informational systems.

A full description of the levels as well as their application is provided in the paper
(McDermott and Folds, 2022).

Applicability
The operations described in HAIKU use cases and in general aviation, resemble
operations in military, where information is presented on the basis of need and time
constraints to the user. Our approach was to apply the CLT layers to capture the XAI
needs related to the use cases and build an overview of operation for each use case.
Time constraints vary significantly in each use case. As an example, in use case 1 the
pilot may have less than 30 seconds or around 1 minute for each interaction and
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information consumption, whereas in use case 5 the user can choose how much
information they would like to consume in each interaction.
CLT allows for an uniform approach for this problem and addresses the needs for
abstraction level and time constraints. With the insights obtained from how each
operation is performed, including the kind of information transfer needed, associated
abstraction levels and time constraints, the XAI strategies may be outlined.
Additionally, the content which reflects the interaction and ML/DL models for XAI, can
then be used later for implementation and validation. Altogether, these methods
provide a basis for strategies for each use case.
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Strategies for use cases

Use case 1: Flight deck startle response
The startle response assistant aims to detect the startle and surprise reaction of pilots
to be able to support them in recovering as quickly as possible. It will help pilots to
regain control of the aircraft and a good situational awareness to be able to stay
“ahead of the aircraft”. The startle response assistant will play an active role when an
unexpected event occurs and when a startle or surprise response is detected. Support
will be provided as long as necessary. Generally, the adverse effect of a startle or a
surprise does not last more than 5 minutes.

CLT
Level

Applicability Description

CLT 1 During
operation

● On Startle detection, inform the pilot about their
startle situation.

● Before startle even, inform the pilot of a
potential event ahead.

● On startle detection, display the most
immediate action (depending on the situation)
to be done.

CLT 2 During
Operation

CLT 1 + :
● Possible quick startle responses.
● Preemptive startle task list before event .

CLT 3 During
Operation

CLT 2 + :
● Advisory action points/dialogue for stabilizing

the aircraft.
● Possible startle recovery procedures.

CLT 4 Post-OP
briefing

CLT 3 + :
● How pilot was supported to recover from startle
● Why certain aircraft stabilization and advisory

outputs were given (e.g. go-around)

CLT 5 Post-OP
briefing

CLT 4 + :
● Full measurements for startle detection and

aircraft stabilization.
CLT 6 Post-OP

briefing
CLT 5 + :

● Possible anomalies that were not considered in
startle.

● Possible alternative approaches to startle and
stabilize.

Table 3: CLT levels for use case 1, startle detection.

Use case 2: Flight deck route planning/replanning
During flights, pilots must manage complex situations involving numerous factors such
as bad weather, complicated terrain, dense traffic, technical failures, human errors,
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etc. As Human cognitive resources in the cockpit are limited, pilots can sometimes fail
to correctly assess the risks associated with such conditions, especially when several
combine. For use case 2, the decision making is of strategic nature, under a
non-emergency situation, allowing for a reasonable time to make the decision. The
situation addressed by the IA (Intelligent Assistant) is of medium to high complexity
(“fuzzy” meteo event, high density airspace, etc). Other concurrent activities are
happening in the cockpit, demanding attention from pilots.
A scenario where CLT can be applied in use case 2 is meteorological threat. IA detects
sensitive changes in mapped weather threats using SWIM services and/or
meteorological radar data. Flight plan is re-evaluated according to operational
intentions and replanning options with respective KPI impacts are presented. Crew
evaluates and selects a replanning option. IA supports negotiation of changes with
ATC/AOCC. IA implements agreed flight changes in FMS.
First operation is as follows:
Decision point: Is there a significant weather threat that demands an alternative route?
Key outcome: Evaluation of threat alert presented by the IA
(mandatory/safety-related? recommendable? As expected?)

CLT
Level

Applicability Description

CLT 1 During
operation

Impact to safety; KPIs with current route (map +
pictograph with values)

CLT 2 During
operation

CLT 1 + :
● Affected segment (e.g. Area to avoid, Risk

colormap, Differentiating safety threat to
operational intention threat)

CLT 3 During
operation

CLT 2 + :
● Detailed weather information (data fusion) (e.g.

cloud type, height Information source and
quality)

CLT 4 During
operation

CLT 3 + :
● Comparison to forecasted information used in

planning
CLT 5 During

operation
CLT 4 + :

● Detailed weather information for each
sensor/source

CLT 6 Post-OP Detailed assessment of IA states and behavior
Table 4: CLT levels for weather threat evaluation in use case 2.

The next operation:
Decision point: Select alternative route due to weather threat.
Key outcome: Evaluate possible routes based on weather data.

CLT
Level

Applicability Description

CLT 1 Operational,
in-flight

How well the recommended route fulfills the set of
intentions (map + pictograph / index / scores).
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CLT 2 Operational,
in-flight

CLT 1 + :
● KPIs of the recommended route (map +

pictograph with values)
CLT 3 Operational,

in-flight
CLT 2 + :

● Show alternative route options to fulfill intentions
with CLT1 and CLT2.

CLT 4 Operational,
in-flight

CLT 3 + :
● Highlight uncertainties related to data

quality/availability
CLT 5 Operational,

Training /
Coaching

CLT 4 + :
● Show assessed performance vs calculated

optimal, highlighting potential improvement
points

CLT 6 Post-OP Demonstrate robust, intended behavior assessing the IA
states
Evaluate root cause of incidents assessing the IA states.

Table 6: CLT for alternative route selection in use case 2.

Use case 3: Urban Air Mobility
The emergence of UAM is expected to lead to a significant increase in low-level
airspace traffic over cities in the coming decades. To manage this airborne traffic
safely and efficiently, UATM solutions are necessary. These solutions should focus on
optimized airspace usage, adaptable airspace structures, and shared situation
awareness for all stakeholders. The central human role, known as the UAM
Coordinator, will be responsible for providing real-time strategic and tactical U-space
services to UAS (Unmanned Aircraft Systems) and UAM operators and stakeholders.
To ensure safety and efficiency in managing the increased traffic and coordinating
ground and airborne activities, the UAM Coordinator will be supported by intelligent
assistant (IA) capable of monitoring all air and ground traffic within the city airspace.
Additionally, these assistants will monitor ground events and city activities with
potential impacts on trajectory planning.

CLT
Level

Applicability Description

CLT 1 During
Operation

Drone request notification

CLT 2 During
Operation

CLT 1 + :
● Route planning (e.g. annotated maps, displayed

to the UAM coordinator)
CLT 3 During

Operation
CLT 2 + :

● Highlight of the route blocks or causes of route
change (e.g. annotated map)

CLT 4 During
Operation/Po

st-OP

CLT 3 + :
● Full sensory data availability to the UAM for

analysis
CLT 5 Post-OP CLT 4 + :

● Assessed performance of the route calculation
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CLT 6 Post-OP Full analysis of the performance of the assistant
system, planned route, and anomaly handling

Table 7: CLT for use case 3.

Use case 4: Digital and Remote Towers
Intelligent Sequence Assistant (ISA) is designed to bolster and augment
decision-making capabilities for ATCs. By focusing on optimizing runway utilization at
single-runway airports, ISA offers real-time sequence suggestions for both arriving
and departing aircraft. This dynamic and immediate assistance empowers Tower ATCs
to handle traffic flow more efficiently by ensuring timely and accurate forecast
updates. The envisioned advantages include enhanced decision-making, optimized
runway usage, improved operational efficiency, and a safer, more streamlined air
traffic management system. ISA achieves this by considering preset restrictions,
prioritization rules, and inputs from various events, enabling it to make well-informed
and effective sequence recommendations. With ISA's support, ATCs can enhance their
situational awareness and manage air traffic with greater precision, ultimately leading
to a more seamless and secure air traffic environment.

CLT
Level

Applicability Description

CLT 1 Pre-Op/During
operation

Overview of the expected traffic (arrivals and
departures, workforce during peak hours).
If Pre-Op, can be used to brief ATCOs before work
shift.

KPIs with current situation

CLT 2 During
Operation

CLT 1 + :
● Display immediate solution for a sequence

change (e.g. maps, updated flight maps etc.)
CLT 3 During

Operation
CLT 2 + :

● Provides complete information for the changes,
and the differences with the initial KPIs.

● Provides necessary alerts for the ongoing
event.

CLT 4 Post-OP CLT 3 + :
● Provides useful information regarding the event

(changed sequence, essential sensor data) for
debriefing for the next shift.

CLT 5 Post-OP CLT 4 + :
● Full sensory data with the impact of the

targeted changes due to the event is available
at this level (e.g. traffic workload per X minutes,
correlation between events and delays etc.)

CLT 6 Post-OP CLT 5 + :
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● Additional data (historical analysis, airlines,
airplanes etc.) is available for further detailed
analysis of the event. Could be used for
training purposes.

Table 8: CLT for use case 4.

Use case 5: Airport Safety Watch
Airport safety watch relies heavily on analysis of safety and operational parameter
data from Luton Airport (airport operator, airlines, handling services etc,), and has two
main goals. First, analysis of persistent incident types (e.g. pushback errors, wrong
taxiway selection etc.) and identifying solutions which would decrease the occurrence
of these incidents. Next goal, aims to predict the risk of certain operations on
particular days according to risk factors.

CLT
Level

Applicability Description

CLT 1 Operation/Sen
ior level

A series of key risks and impacts are provided (maps,
graphs, etc. ).

CLT 2 Operation/
directors,

department
heads

CLT 1 + :
● Possible risks (predicted risks) are provided

(maps, highlighted areas, possible causes in
areas).

CLT 3 Operation/
stack partners

CLT 2 + :
● Possible solutions to the current ongoing

incident
● Preventative measures for possible immediate

incidents (risks).
CLT 4 Operation/

Stack
partners,

Operational
and safety
managers

CLT 3 + :
● Specific incident risk is selected, possible

solutions and preventive measures are
displayed.

● Live update of day-to-day risks.

CLT 5 Operation/
Airside

operational
safety

leadership

CLT 4 + :
● The full analysis of the risk data will be provided

to the partners and their effectiveness will be
taken as feedback

CLT 6 Operation/
Operational
personnel
(airside)

CLT 5 + :
● Heightened operational risks with precise data

are distributed to operational actors.
● Possible tailoring to specific risk areas (runway

problems, icing, etc.)
● Impact and correlation between incidents

Table 9: CLT for use case 5.
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Use case 6: Airport spreading Virus prevention
COVID 19 and airborne diseases pose a great impact to individuals' health. In
particular, in indoor environments, crowded places are often susceptible to more
frequent infections. As such they need to be avoided. In airports, people move with
specific patterns toward the duty-free shops and restaurants, as well as the gates.
There is a necessity in routing the crowd in such a way that they do not overcrowd
shops in the airport. For instance, a passenger may go to the perfume shop a bit later
during her stay if the maximum number of people reside in the shop. There is a
definition of the number of people per a particular number of square meters that is
defined by the Ministry of Health of a country. By being able to count the people that
go to airport shops and coffee places/restaurants we can minimize the infection
probability. This can be done from the time that the people disembark the plane or
check in until they reach the common areas of the airport. Moreover, the air quality
also needs to be measured whereby CO2, temperature, humidity and total Volatile
Organic Compounds (tVOC) indexes are better.
There is a need for a digital assistant that will inform the passengers and the shop
administrators regarding the available capacity as well as the air quality of the
common places in airports, in order to avoid crowding them, with the risk of infection.
Scheduling and routing the passengers is essential since it will spread the time of visit
to common places. An integrated system for indoor environments is essential which
will encapsulate the use of wireless networking and AI to provide an efficient digital
assistant to avoid COVID infection.

CLT
Level

Applicability Description

CLT 1 Operation Visual and text information regarding the COVID
recommendation response. The duration of this message
will be immediately outputted to the screen of the
passenger (is not a lengthy narration) showing the level of
crowdedness and air quality.

CLT 2 Operation CLT 1 + :
Since this is targeting the intent and related considerations
for rules of engagement, this is the future recommendation
of the system showing the infection probability as a variable
and the level of people flowing towards the places of
interest as well as the air quality. The initial routing decision
is given to the passenger.

CLT 3 Operation CLT 2 + :
Here the fact that the duration of an operation is less than 5
minutes provides the passenger with the time to process
the recommendation by the system of the COVID infection
probability to airport common places. Detailed pathways
information and air quality forecasts are given and the
limitation of the infection is provided to show the success
of the recommendation system in enhancing trust.
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CLT 4 Post-OP CLT 3 + :
This level essentially initiates the post-operation procedure
that provides the airport personnel with information
relevant to the application of the recommendation system
and the routing process as well as the air quality. By
providing the routing process statistics to a higher-level
authority other than the passenger the system may be
evaluated and the trust may be strengthened as well as its
validity elaborated.

CLT 5 Post-OP CLT 4 + :
This is an envelope of the previous level enhanced with
more parameters regarding the passengers’ trends
regarding the recommendation system. This targets the
airport staff responsible for health and safety and it will
provide the overall mission of the system to be deployed
before being available again to the passengers. This will
provide information to maintain and improve the system as
a whole.

CLT 6 Post-OP CLT 5 +:
The details and logs will be updated with parameters on the
fly, if applicable, as well as maintenance and other
information. This again targets the airport personnel.

Table 10: CLT for use case 6.
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Conclusion and Summary
CLT provides the use cases with a high-level view on designing their Intelligent
Assistants (IA) with respect to explainability attributes such as what (or how) an
explainable assistant system would (should) behave for a certain scenario, similar to
requirement analysis for classical software development. Together with interaction and
models, they will next transform into implementation design in task 5.2 of HAIKU.
In the analysis of CLT (Table 11), it is important to understand that:

● Not all the stages of CLT are suitable for HAIKU use cases.
● The focus of strategies and implementation will be on levels that aim on

operation (during operation) and less or none on Pre/Post-OP. However, for
completeness, these stages are mentioned for each use case.

● The utility of Pre/Post-Ops mainly lay on training and operation analysis on
organizational level.

● Regardless, a complete IA must be capable of providing the necessary
information in all levels to corresponding stakeholders (e.g. a level 6 report for
legal reasons or organizational purposes).

UC

CLT Lev.

1 2 3 4 5 6

CLT 1 Operation Operation Operation Operation Operation Operation
CLT 2 Operation Operation Operation Operation Operation Operation
CLT 3 Opertaion Operation Operation Operation Operation Operation
CLT 4 Post-OP Operation Operation/Pos

t-OP
Post-OP Operation Post-OP

CLT 5 Post-OP Operation Post-OP Post-OP Operation Post-OP
CLT 6 Post-OP Post-OP Post-OP Post-OP Operation Post-OP

Table 11: Comparative view of operational stage for the use cases with regards to CLT levels.

● In UC3 CLT 4, the abstraction can be applied to both Operational and Post-OP.
To distinguish and decide the operational stage, duration of information
consumption must be taken into account.

● CLT levels 1-3 usually aim at short duration information consumption which is
suitable for sensitive/time-restricted scenarios (e.g. UC1 startle response).
Some use cases are more elaborate with time and information consumption.

● UC 5 is a good example where all levels are potentially in operation. However,
the information in different levels is consumed by different stakeholders/roles.

The next steps in second year (Task 5.2) will be to implement fully or partially, an XAI
interface for the use case. This will be realized for each use case by selecting an
operational stage from the CLT table and implementing an interface based on the
interaction paradigms, which will enable information consumption and interaction
between ML/DL models and the user. Finally, this interface will be evaluated in
validation studies.
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