Human Factors Assessment of Future Aviation Intelligent Assistants

Human AI teaming Knowledge and Understanding for aviation safety

Presentation at CRA Forum, 20-21 September, Birmingham UK

Barry Kirwan, EUROCONTROL

1

Visions of AI in Aviation...

... in diverse aviation operations

HAIKU looks far ahead...

Our goal

is to pave the way for human-centric-Al via the exploration of interactive AI prototypes in a wide range of aviation contexts

Our challenge is to deliver truly human-centric **Digital Assistants**, capable to 'fit' the way humans work.

>>>

<complex-block>

EASA's AI Classification System

Level 1 AI : assistance to human

- Level 1A: Human augmentation
- Level 1B: Human cognitive assistance in decision and action selection

Level 2 AI : human/machine teaming

- Level 2A: Human and Albased system cooperation
- Level 2B: Human and Albased system collaboration

Level 3 AI : more autonomous machine

- Level 3A: The AI-based system performs decisions and actions, overridable by the human.
- Level 3B: The AI-based system performs nonoverridable decisions and actions.

Key Human Factors Aspects with Human-AI Teaming 🐝 Haiku

'Internal' HF

- Situation Awareness
- Workload
- Mental Model
- Causal thinking & biases
- Trust
- Motivation
- Autonomy
- Engagement
- Startle / Surprise
- Experience / Expertise
- Values & Ethics
- Fast decision-making
- Multi-tasking
- In-and-out of loop
- Social interaction / teaming
- Wellbeing / Mental Health
- Culture

AI-related

- AI Model / SA
- Data biases
- Self-checking, monitoring and confidence level assessment
- Monitoring of user's cognitive state
- [Operational] Explainability
- Dialogue capability
- Rational argumentation with user
- Temporal sensitivity
- Task flexibility
- Edge / Corner cases / Hallucinations
- Trade-offs & core values
- Supervised / unsupervised learning
- Failure modes
- Detection of poor user strategies
- Customisation to user
- Digital twins

System-Related

- Distributed SA
- HMI intelligibility / usability
- Communications
- Authority Gradient
- Task Allocation
- Teamwork
- Training & Selection
- Procedures
- Leadership
- Error / Failure Management
- HAIRM' (HAT-CRM)
- Fatigue Management
- Safety culture
- Organisational Culture

Human-AI Teaming Human Factors Assurance Process

Human-Al HAZOP

Monitoring, Adapting, Learning

Human-AI systems may evolve rapidly once implemented. Impacts on safety performance, crew wellbeing, and safety culture, must be closely monitored and managed.

Training & Operational Readiness Testing

Training of staff in new roles, motivating the workforce, fine-tuning of explainability etc. for a wider range of situations, development of failure management and fallback systems.

Task Analysis

How the system should work, including all team players, using scenarios and timelines, tracking the evolution of human and Al situation awareness

Human AI Teaming (HAT) Requirements

From maintaining skill sets and situation awareness, to managing workload in emergencies, to dialogue modalities to reciprocal error checking

Human-in-the-loop simulations

Human-AI simulations where HAT requirements can be evaluated using Human Factors tools and techniques.

Task Analysis (OSD) & HAZOP

Operations Sequence Diagram Design

esign Human Factors

Data Representation

Putting the people pieces together to achieve effective and robust task performances

Human Hazard and Operability Study (HAZOP)

safety HumanFactors analysis safeflix

What-if? approach, using experts to determine what could go wrong and how to prevent it.

On Operational Sequence Diagram for HAT

What does an OSD include?

- Time
- The actual system state
- The goal that needs to be achieved
- The people involved & location
- Key information sources
- Decisions, actions, communications
- What they may think the system state is, if different from actual
- Equipment resources issues
- Potential bottlenecks that may block goal achievement
- Secondary tasks / distractions

What else does a HAT OSD need?

- What the AI believes/predicts to be the system state
- The AI recommendation
- Closeness of advice to performance edge / distance from operator's understanding
- The AI rationale (explainability) whether before, during or after the event
- HMI for HAT communication: signals, understanding, predictive, uncertainty
- Human-AI 'dialogue' including crosschecking and queries
- The authority gradient ('who's in charge')
- HF Impact: trust, surprise/startle, workload, engagement (out of loop); competence

HAT OSD Unpacked

Time Actual System State	Goal	Human1	Human2	Human3	Info sources (non-Al)	Operator believed system state	AI believed system state	AI solution
14:00 UTC Weather and traffic configuration will lead to increased risk of incorrect taxiway selection	Alert operational units to heightened risk and employ counter-measures	Safety Watch Supervisor (located in the Operational Control Centre) receives the AI advice and wants to verify it.			Traffic arrival / departure monitoring and schedules; weather monitors; surface monitoring	Okay now, could get difficult later.	increased taxiway selection error risk	Increase monitoring of conformance or reduce traffic capacity. The advice will be time-framed, e.g. from 15:00- 17:30 UTC.

AI HMI	AI Rationale (XAI)	Closeness of	H-AI Dialogue	Authority gradient	Decision / Action	HF Impact: trust, SA; startle /	Comments & Observations
		solution to				surprise; workload;	
		performance edge				engagement; competence	
The AI HMI can	The Safety Watch IA	Unless the	The Safety Watch	The human is in	The supervisor	No negative impact on Human	
present graphical	will be able to cite	parameters are	Supervisor queries	control. This is HAT	decides to alert for	Factors in this scenario. The AI is	
display tracking	historical evidence,	wildly off, this would	whether Hold-Point	category 1B.	bothtaxiway	simpy augmenting human	
current and	or show the clusters	be within expected	Busts will also be an		selection error and	performance and system safety.	
predicted	of factors that	parameters of the	issue, as a number		holdpoint busts.		
parameters including	predict increased	Safety Watch tool.	of the indicators for				
risk of 3 error types,	risk. It should show		this error are also				
as well as threshold	which parameters		present in the				
for alert. LTN Airport	are involved, as well		prediction. The				
map display	as any that are not		supervisor can do				
highlighting taxiway	indicated. Ideally it		this simply by				
sections and	should give		selecting Hold-Point				
unctions at risk.	information on		Busts Prediction'. It				
	uncertainty /		shows that while				
	confidence level.		indeed several of				
			the indicators are				
			preent, they are just				
			below the statistical				
			threshold.				

Traditional HAZOP Guidewords

- No, not done
- Other than
- Sooner / Later
- Less / More
- As well as / Part of
- Reverse

How HAZOP Works

Step	Guide Word	Hazard	Cause(s)	Consequence	Existing Safeguards	Recommendation
Al sends alert warning	NONE	Alert not triggered by Al	Al algorithms/data not sensitive enough to error causes	No alert raised, yet incorrect taxiway selected by an aircraft.	Normal ('as-is') detection and recovery processes will operate to prevent taxiway collision	Refine data-set / algorithms to increase sensitivity to actual causal patterns
	NONE	Supervisor judges situation ok and decides not to issue warning	 Supervisor experience differs from full dataset. Previous false alarms 'Pushback' from airlines or ATC. 	No alert raised, yet incorrect taxiway selected by an aircraft.	Normal ('as-is') detection and recovery processes will operate to prevent taxiway collision	Training review for supervisor. Discussion at Safety Stack over the threshold for triggering the alert.
	PART OF	Sup issues alert but message fails to reach everyone	 (1) Comms difficulties (2) Community App problems (3) Internal channels fail to reach all parties 	Insufficient reaction to alert; incorrect taxiway may be selected.	Normal ('as-is') detection and recovery processes will operate to prevent taxiway collision	Review of comms links and processes to ensure 100% coverage next time.

What we aim to deliver (2 more years)

- How to develop trustworthy AI systems that humans can work with, demonstrated by TRL6 case studies
 - Cockpit, virtual tower, airport safety, UTM
- HF Guidance
 - How to capture HF4AI requirements
 - How to evolve and validate the concept via requirements, task analysis, HAZOP and simulations
 - HMI and two-way communication design
 - Reciprocal explainability
 - Guidance on current & future workforce requirements & safety culture
 - Societal acceptance, regulatory & organizational considerations, and HF capability needed to ensure safe entry of AI systems into operation.
- Safety, Security, Human Factors, & Validation Approaches

We kind of need to get Human AI Teaming right...

"Open the pod bay doors, HAL."

"I'm sorry, Dave. I'm afraid I can't do that."

Thanks for your attention

Barry Kirwan

barry.kirwan@eurocontrol.int

https://haikuproject.eu/